NestJS + Angular on AWS

Kubernetes
Complete Guide: Docker, Kubernetes, RDS PostgreSQL, S3 Storage

Production-Ready Microservices Architecture

sales@bithost.in

@ www.bithost.in

Document Type: Complete Technical Implementation Guide (15 Sections)
Reading Time: ~2 Hour
Version: 1.0 | Published: Jan 26, 2026

Stack: NestJS 10+, Angular 17+, Docker, Kubernetes, AWS EKS, PostgreSQL 15, S3

mailto:sales@bithost.in
https://www.bithost.in/

B Complete Table of Contents (15
SECTIONS)

: . 8. Angular Frontend Development
1. Executive Summary & Architecture g P

Vision 9. CI/CD Pipeline & GitOps

2. Infrastructure Planning & AWS 10. Deployment to EKS

Selecti
election 11. Monitoring, Logging &

3. Docker Strategy & Image Observability

Optimization . -
P 12. Security & Network Policies

4. Kubernetes Architecture & EKS
vbernetes Architecture 13. Scaling & Performance
Desi
e Optimization

5. Database Setup (RDS PostgreSQL
atabase Setup (ostgresQL) 14. Troubleshooting & Best Practices

6.S3 St Confi ti
orage L-onfiguration 15. Production Checklist & Operations

7. NestJS API Development Setup Guide

1. Executive Summary & Architecture

Vision

This guide provides a complete blueprint for deploying a modern full-stack application
(NestJ)S APl + Angular Frontend) on AWS Kubernetes (EKS) with containerization via
Docker, persistent data in RDS PostgreSQL, and file storage in S3.

Architecture Overview

Three-Layer Architecture:

e Presentation Layer: Angular SPA served via S3 + CloudFront CDN
e Application Layer: NestJS API running in EKS pods

e Data Layer: RDS PostgreSQL + S3 file storage

Key Features

Scalable backend with dependency
API Server NestJS 10+ o
Injection

Frontend Angular 17+ Responsive SPA with RxJS

o Consistent deployment across
Containerization Docker)
environments

Kubernetes . . _
Orchestration (EKS) Auto-scaling, self-healing, rolling updates
Database RDS PostgreSQL Managed relational database with backups
File Storage AWS S3 Scalable object storage for media

Benefits of This Approach

J High Availability: Multi-AZ deployment with auto-failover

o Auto-Scaling: Horizontal pod autoscaling based on metrics

. Zero Downtime: Rolling updates without service interruption

o Separation of Concerns: Frontend, API, and data independently scaled
o Cost Efficient: Pay-per-use with auto-scaling

. Easy CI/CD: Git-driven deployments with ArgoCD

J Production Grade: Built-in monitoring and logging

2. Infrastructure Planning & AWS

Selection

AWS Services Selection

EKS 3-5 worker nodes Managed Kubernetes, AWS
(t3.medium-t3.large) integration

RDS Automated backups,
db.t3.large Multi-AZ o

PostgreSQL replication, patches

S3 Standard + Intelligent-Tiering Durable, scalable file storage

ECR Private container registry Store Docker images securely

CloudFront CDN with S3 origin Serve Angular app from edge

m

CloudWatch Logs + Metrics + Alarms Comprehensive observability

Cost Estimation (Monthly)

EKS Cluster

EC2 Nodes (3xt3.medium) $100 $180
RDS PostgreSQL $280 $420
S3 Storage (100GB) $2.30 $2.30
Data Transfer $10 $30
TOTAL $466 $705

VPC Network Design

AWS Region: ap-south-1 (Mumbai)
— veC CIDR: 10.0.0.0/16

— Public Subnets (ALB)

| F— 10.0.1.0/24 (ap-south-la)
L— 10.0.2.0/24 (ap-south-1Db)
Private Subnets (EKS Nodes)
F— 10.0.11.0/24
L— 10.0.12.0/24

-south-1a)
ap-south-1Db)

Database Subnets

F— 10.0.21.0/24

RDS)

|
F__
|
|
F__
|

(a
(a
(
(

ap-south-1a)

$250

$600

$2.30

$100

$1,025

L— 10.0.22.0/24 (ap-south-1Db)
L— NAT Gateway for private subnets

3.1 NestJS API Dockerfile (Multi-Stage Build)

Stage 1: Builder
FROM node:18-alpine AS builder

WORKDIR /app

Copy package files
COPY package*.json ./
RUN npm ci —--only=production && \\

npm cache clean --force

Copy source code

COPY

Build Nestds
RUN npm run build

Stage 2: Runtime
FROM node:18-alpine

WORKDIR /app

Install dumb-init for proper signal handling
RUN apk add --no-cache dumb-init

Create non-root user
RUN addgroup -g 1001 -S nodejs && \\
adduser -S nestjs -u 1001

Copy only necessary files from builder

COPY --from=builder --chown=nestjs:nodejs /app/node modules ./node modu

COPY --from=builder --chown=nestjs:nodejs /app/dist ./dist
COPY --from=builder --chown=nestjs:nodejs /app/package*.]json ./

Switch to non-root user

USER nestjs

Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3
CMD node -e "require ('http').get ('http://localhost:3000/health', (r)

Expose port
EXPOSE 3000

Use dumb-init to handle signals properly
ENTRYPOINT ["dumb-init", "--"]

Start application
CMD ["node", "dist/main.js"]

3.2 Angular Frontend Dockerfile

Stage 1: Build
FROM node:18-alpine AS builder

WORKDIR /app

COPY package*.json ./
RUN npm ci

COPY

RUN npm run build -- --configuration production

Stage 2: Serve with nginx

FROM nginx:alpine

Remove default config

RUN rm -rf /etc/nginx/conf.d/*

Copy nginx config
COPY nginx.conf /etc/nginx/conf.d/default

Copy built Angular app from builder
COPY --from=builder /app/dist/angular-app /usr/share/nginx/html

Create non-root user for nginx
RUN addgroup -g 1001 -S www && \\
adduser -S www -u 1001 && \\

chown -R www:www /usr/share/nginx/html

Health check

HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3
CMD wget —--no-verbose --tries=1 --spider http://localhost/health ||

EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

3.3 nginx.conf for Angular

server {
listen 80;

Server name g

root /usr/share/nginx/html;

index index.html index.htm;

Gzip compression
gzip on;
gzip types text/plain text/css text/javascript application/javascrig

gzip min length 1000;

Cache control
location ~* \. (?:bundle\.js|bundle\.css)$ {
expires 1ly;

add header Cache-Control "public, immutable";

location ~* \.(js|css|fonts)$ {
expires 30d;

add header Cache-Control "public";

API proxy

location /api/ {
proxy pass http://nestjs-api.default.svc.cluster.local:3000/;
proxy set header Host Shost;
proxy set header X-Real-IP Sremote addr;
proxy set header X-Forwarded-For S$proxy add x forwarded for;

proxy set header X-Forwarded-Proto $Sscheme;

SPA routing

location / {
try files Suri Suri/ /index.html;
expires -1;

add header Cache-Control "public,

Health check
location /health {
access log off;

return 200 "healthy\n";

add header Content-Type text/plain;

3.4 Docker Image Optimization Tips

e Use Alpine Linux for smaller images (5-10x smaller)
e Multi-stage builds to exclude build dependencies
e Run as non-root user for security

¢ Include health checks for container orchestration

e Use .dockerignore to exclude unnecessary files

e Layer caching: place stable commands first

e Compress images: ~80-150MB for NestJS, ~50-80MB for Angular

4.1 EKS Cluster Architecture

AWS EKS Cluster (ap-south-1)
F—— Control Plane (Managed by AWS)
— API server

F— etcd

F—— Scheduler

L— controller Manager

Worker Nodes (EC2)

F—— Node 1 (ap-south-1la, t3.large)
F—— Node 2 (ap-south-1b, t3.large)
L— Node 3 (ap-south-1b, t3.medium)
Add-ons

F—— VPC CNI for networking

F—— CoreDNS for service discovery
F—— kube-proxy for load balancing
L AWS Load Balancer Controller

I N

Third-party

F—— Prometheus (monitoring)
F—— Loki (logging)

F—— ArgoCD (GitOps)

I Cert-Manager (TLS)

4.2 Kubernetes Namespace Structure

Create namespaces
kubectl create namespace production
kubectl create namespace staging

kubectl create namespace monitoring

kubectl create namespace ingress-nginx

Apply namespace labels for pod security

kubectl label namespace production pod-security.kubernetes.io/enforce=ba

4.3 NestJS APl Deployment (Kubernetes)

apiVersion: apps/vl
kind: Deployment
metadata:
name: nestjs-api
namespace: production
labels:
app: nestjs-api
tier: backend
spec:
replicas: 3
Strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: O
selector:
matchLabels:
app: nestjs-api
template:
metadata:
labels:
app: nestjs-api
tier: backend
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "3000"
prometheus.io/path: "/metrics"
spec:
serviceAccountName: nestjs-api
securityContext:
runAsNonRoot: true
runAsUser: 1001
fsGroup: 1001
containers:
- name: nestjs-api
image: 123456789.dkr.ecr.ap-south-1.amazonaws.com/nestjs—api:1.(

imagePullPolicy: IfNotPresent

ports:

- name: http
containerPort:
protocol: TCP

env:

- name: NODE ENV
value: "production"
name: DATABASE URL
valueFrom:

secretKeyRef:
name: db-credentials

key: connection-string

name: AWS S3 BUCKET

valueFrom:
configMapKeyRef:
name: app-config
key: s3-bucket
name: AWS REGION

value: "ap-south-1"

Health checks
livenessProbe:
httpGet:
path: /health
port: http
initialDelaySeconds:
periodSeconds: 10
timeoutSeconds: 5

failureThreshold: 3

readinessProbe:
httpGet:
path: /ready
port: http
initialDelaySeconds:
periodSeconds: 5
timeoutSeconds: 3

failureThreshold: 3

Resource limits
resources:
requests:
memory: "256Mi"
cpu: "250m"

limits:

memory: "512Mi"

cpu: "500m"

Volume mounts

volumeMounts:

- name: config
mountPath: /app/config

readOnly: true

Security context
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop:
- ALL

Pod anti-affinity for spreading

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app
operator: In
values:
- nestjs-api

topologyKey: kubernetes.io/hostname

volumes:
- name: config
configMap:

name: nestjs-config

apiVersion: vl

kind:

Service

metadata:

name: nestjs-api

namespace: production

spec:

type: ClusterIP

selector:

app: nestjs-api
ports:
- name: http
port: 3000
targetPort: http
protocol: TCP

apiVersion: autoscaling.k8s.io/v2
kind: HorizontalPodAutoscaler
metadata:

name: nestjs-—-api-hpa

namespace: production
spec:

scaleTargetRef:

apiVersion: apps/vl

kind: Deployment
name: nestjs-api
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
behavior:
scaleDown:
stabilizationWindowSeconds:
policies:
- type: Percent
value: 50
periodSeconds: 15
scaleUp:
stabilizationWindowSeconds:
policies:
- type: Percent
value: 100

300

0

periodSeconds: 15
- type: Pods

value: 2

periodSeconds: 15

selectPolicy: Max

4.4 Angular Frontend Deployment

apiVersion: apps/vl
kind: Deployment
metadata:
name: angular-frontend
namespace: production
spec:
replicas: 2
selector:
matchLabels:
app: angular-frontend
template:
metadata:
labels:
app: angular-frontend
spec:
containers:
- name: angular
image: 123456789.dkr.ecr.ap-south-1.amazonaws.com/angular-frontd
ports:
- containerPort: 80
livenessProbe:
httpGet:
path: /health
port: 80
initialDelaySeconds: 20
periodSeconds: 10
readinessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 5
periodSeconds: 5
resources:

requests:

memory: "128Mi"

cpu: "100m"
limits:

memory: "256Mi"

cpu: "200m"

apiVersion: vl
kind: Service
metadata:
name: angular-frontend
namespace: production
spec:
type: LoadBalancer
selector:
app: angular-frontend
ports:
- port: 80
targetPort: 80

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:

name: app-ingress

namespace: production

annotations:

cert-manager.io/cluster-issuer: "letsencrypt-prod"

nginx.ingress.kubernetes.io/ssl-redirect: "true"
spec:
ingressClassName: nginx
tls:
- hosts:
- app.example.com
secretName: app-tls
rules:
- host: app.example.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: angular—-frontend

port:

number: 80
- path: /api
pathType: Prefix
backend:
service:
name: nestjs-api
port:
number: 3000

5.1 RDS PostgreSQL Creation (Terraform)

resource "aws db instance" "main" {
identifier = "app-production-db"
engine = "postgres"
engine version = "15.4"

instance class = "db.t3.large"

allocated storage 100
max allocated storage 500
storage type = "gp3"

storage encrypted = true

db name = "production"
username = "postgres"

password random password.db password.result

Availability

multi az = true

publicly accessible false

db subnet group name aws_db subnet group.main

vpc security group ids = [aws security group.rds.i

Backups

backup retention period = 30

backup window = "03:00-04:00"
copy tags to snapshot true

skip final snapshot false

Performance
performance insights enabled = true
enabled cloudwatch logs exports = ["postgresqgl"]

deletion protection = true

tags = {
Name = "app-production-db"

Environment = "production"

resource "aws secretsmanager secret" "db password" {

name = "app/db/credentials"

resource "aws secretsmanager secret version" "db password" {

secret id = aws secretsmanager secret.db password.id
secret string = jsonencode ({

username aws db instance.main.username

password aws_db instance.main.password

engine "postgres"

host aws db instance.main.endpoint

port 5432

dbname aws _db instance.main.db name

5.2 NestJS Database Configuration

// src/database/database.module.ts
import { Module } from '@nestjs/common';
import { TypeOrmModule } from '@nestjs/typeorm';

import { ConfigService } from '@nestjs/config';

@Module ({
imports: |
TypeOrmModule.forRootAsync ({
inject: [ConfigService],
useFactory: (config: ConfigService) => ({
type: 'postgres',
host: config.get ('DB HOST'),

port: config.get ('DB_PORT', 5432),
username: config.get('DB_USER'),
password: config.get ('DB _PASSWORD'),
database: config.get ('DB NAME'),
entities: [dirname + '/../**/*.entity.{js,ts}'],
synchronize: false,
migrations: [dirname + '/../migrations/*.{js,ts}'],
migrationsRun: true,
logging: config.get ('NODE ENV') === 'development',
ssl: {
rejectUnauthorized: false,
b
pool: {
min: 5,

max: 20,

export class DatabaseModule {}

5.3 Database Migrations (TypeORM)

// src/migrations/1704067200000-CreateUsersTable.ts

import { MigrationInterface, QueryRunner, Table } from 'typeorm';

export class CreateUsersTablel704067200000 implements MigrationInterfacd
public async up (queryRunner: QueryRunner): Promise {
await queryRunner.createTable (
new Table ({
name: 'users',
columns: [
{
name: 'id',
type: 'uuid',
isPrimary: true,
default: 'gen random uuid() ',
by
{
name: 'email',

type: 'varchar',

isUnique: true,

isNullable: false,

name: 'password hash',
type: 'varchar',

isNullable: false,

name: 'first name',
type: 'wvarchar',

isNullable: true,

name: 'last name',
type: 'varchar',

isNullable: true,

name: 'is active',

type: 'boolean',
default: true,

name: 'created at',
type: 'timestamp',
default: 'CURRENT TIMESTAMP',

name: 'updated at',
type: 'timestamp',
default: 'CURRENT TIMESTAMP',
onUpdate: 'CURRENT TIMESTAMP',
by
I
indices: [
{ columnNames: ['email'] 1},

{ columnNames: ['created at'] },

public async down (queryRunner: QueryRunner): Promise {

await queryRunner.dropTable ('users');

}
}
5.4 PostgreSQL Performance Tuning

IIHHHHHHH%IIIIIIIIIIII|IHHHHIIIIIIIIIIIIIIiHHHH%IIIIIIIIIIIIIIIIIIII

shared_buffers 4GB (25% of RAM) Cached data in memory

12GB (75% of

effective_cache_size Query planner estimates

RAM)
work_mem 64MB Sort/hash memory per operation
maintenance_work_mem 1GB VACUUM/INDEX memory

_ Maximum concurrent
max_connections 200

connections

random_page_cost 1.1 SSD optimization

6. S3 Storage Configuration

6.1 S3 Bucket Setup (Terraform)

resource "aws s3 bucket" "app storage" {

bucket = "app-storage-prod-${random id.bucket.hex}"

tags = {
Name = "app-storage"

Environment = "production"

Enable versioning

resource "aws_ s3 bucket versioning" "app storage" {
bucket = aws s3 bucket.app storage.id
versioning configuration {

status = "Enabled"

Block public access

resource "aws s3 bucket public access block" "app storage" {

bucket = aws s3 bucket.app storage.id

block public acls true
block public policy true
ignore public acls true

restrict public buckets true

Encryption

resource "aws s3 bucket server side encryption configuration" "app stors

bucket = aws s3 bucket.app storage.id

rule {
apply server side encryption by default ({
sse algorithm = "AES256"

Lifecycle policy
resource "aws s3 bucket lifecycle configuration" "app storage" {

bucket = aws s3 bucket.app storage.id

rule {
id = "delete-old-versions"
status = "Enabled"
noncurrent version expiration {

noncurrent days = 90

= "intelligent-tiering"

status = "Enabled"
transition {
days 30
storage class = "INTELLIGENT TIERING"

CORS policy
resource "aws s3 bucket cors configuration" "app storage" ({

bucket = aws s3 bucket.app storage.id

cors rule {
allowed headers ["*"]

allowed methods "GET", "PUT", "POST", "DELETE"]

[
[

allowed origins "https://app.example.com"]
expose headers ["ETag"]

max age seconds 3000

IAM policy for pod access
resource "aws iam role" "app pod role"

name = "app-pod-role"

assume role policy = jsonencode ({
Version = "2012-10-17"
Statement = [{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Federated = "arn:aws:iam::ACCOUNT ID:oidc-provider/oidc.eks.ap-4
}
Condition = {
StringEquals = {
"oidc.eks.ap-south-1.amazonaws.com/id/EXAMPLEID:sub" = "systen

resource "aws iam role policy" "s3 access" {
name = "s3-access"

role aws iam role.app pod role.id

policy = jsonencode ({
Version = "2012-10-17"
Statement = [{
Effect = "Allow"
Action = [
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject",
"s3:ListBucket"
]
Resource = |

aws_s3 bucket.app storage.arn,

"S{aws s3 bucket.app storage.arn}/*"

6.2 NestJS S3 File Upload Service

// src/storage/s3.service.ts

import { Injectable } from '@nestjs/common';

import { S3Client, PutObjectCommand, GetObjectCommand, DeleteObjectComms
import { getSignedUrl } from '@aws-sdk/s3-request-presigner';

import { ConfigService } from '@nestjs/config';

@Injectable ()
export class S3Service {

private s3Client: S3Client;

constructor (private config: ConfigService) {
this.s3Client = new S3Client ({
region: this.config.get ('AWS REGION'),
credentials: {
accessKeyId: this.config.get ('AWS ACCESS KEY ID'),
secretAccessKey: this.config.get ('AWS SECRET ACCESS KEY'),

async uploadFile (

bucket: string,
key: string,
body: Buffer,
contentType: string,
Promise {
const command = new PutObjectCommand ({
Bucket: bucket,
Key: key,
Body: body,
ContentType: contentType,
});

await this.s3Client.send (command) ;

return "s3://S${bucket}/${key} ;

async getPresignedUrl (bucket: string, key: string): Promise ({
const command = new GetObjectCommand ({
Bucket: bucket,
Key: key,
});

return getSignedUrl (this.s3Client, command, { expiresIn: 3600 });

async deleteFile (bucket: string, key: string): Promise ({
const command = new DeleteObjectCommand ({
Bucket: bucket,
Key: key,
1) ;

awalt this.s3Client.send (command) ;

6.3 Angular File Upload Component

// src/app/components/file-upload/file-upload.component.ts
import { Component } from '@angular/core';
import { HttpClient } from '@angular/common/http';

import { Subject } from 'rxjs';

@Component ({
selector: 'app-file-upload',

template:

<div class="upload-area">

<input type="file" #fileinput="" (change)="onFileSelected (Sevent)'

<button (click)="upload()" [disabled]="!selectedFile || uploading'
{{ "{{" }} uploading ? 'Uploading...' : 'Upload' {{ "}}'" }}

</button>

<div class="progress" *ngif="uploadProgress$ | async as progress"
<div class="bar" [style.width.%]="progress"></div>

</div>

</div>

})

export class FileUploadComponent {
selectedFile: File | null = null;
uploadProgress$ = new Subject () ;

uploading = false;

constructor (private http: HttpClient) {}

onFileSelected (event: Event): void {
const target = event.target as HTMLInputElement;
this.selectedFile = target.files?.[0] || null;

upload () : void {

if (!this.selectedFile) return;

const formData = new FormData();

formData.append('file', this.selectedFile);

this.uploading = true;

this.http.post('/api/upload', formData, {
reportProgress: true,
observe: 'events',
}) .subscribe (
(event: any) => {
if (event.type === 4) {
this.uploading = false;
console.log ('Upload complete:', event.body)
} else 1f (event.type === 1) {

const progress = Math.round((event.loaded / event.total) * 10(

this.uploadProgress$S.next (progress) ;

b
(error) => {
this.uploading = false;

console.error ('Upload failed:', error);

7.1 Project Initialization

Initialize NestJS project
nest new nestjs-api

cd nestjs-api

Install essential dependencies

npm install @nestjs/common @nestjs/core @nestjs/platform-express
npm install @nestjs/typeorm typeorm pg

npm install @nestjs/config

npm install @nestjs/jwt @nestjs/passport passport passport-jwt
npm install aws-sdk @aws-sdk/client-s3

npm install class-validator class-transformer

npm install @nestjs/swagger swagger-ui-express

npm install --save-dev @types/node typescript

Create directory structure

mkdir src/{modules, common,config,decorators,guards,interceptors,pipes}

7.2 NestJS App Module (Main Entry)

// src/app.module.ts
import Module, MiddlewareConsumer, NestModule } from '@nestjs/common';
import ConfigModule } from '@nestjs/config';

import TypeOrmModule } from '@nestjs/typeorm';

import APP FILTER, APP INTERCEPTOR } from '@nestjs/core';

import LoggerMiddleware } from './common/middleware/logger.middleware
import LoggingInterceptor } from './common/interceptors/logging.interd
import AllExceptionsFilter } from './common/filters/all-exceptions.fi
import DatabaseModule } from './modules/database/database.module’;
import AuthModule } from './modules/auth/auth.module';

import UsersModule } from './modules/users/users.module';

import FilesModule } from './modules/files/files.module';

import HealthModule } from './modules/health/health.module';

@Module ({
imports: |
ConfigModule. forRoot ({
isGlobal: true,
envFilePath: '.env',
1)y
DatabaseModule,
AuthModule,
UsersModule,
FilesModule,
HealthModule,
I
providers: [
{
provide: APP FILTER,
useClass: AllExceptionsFilter,
by
{
provide: APP INTERCEPTOR,

useClass: LoggingInterceptor,

export class AppModule implements NestModule ({
configure (consumer: MiddlewareConsumer) {

consumer.apply (LoggerMiddleware) . forRoutes ('*") ;

7.3 Authentication Module

// src/modules/auth/auth.service.ts

import Injectable, UnauthorizedException } from '@nestjs/common';
import JwtService } from '@nestjs/Jjwt';

import as bcrypt from 'bcrypt';

import UsersService } from '../users/users.service';

@Injectable ()
export class AuthService {
constructor (
private usersService: UsersService,
private jwtService: JwtService,

) {}

async validateUser (email: string, password: string) {
const user = await this.usersService.findByEmail (email) ;
if (user && await bcrypt.compare (password, user.passwordHash)) {
const { passwordHash, ...result } = user;
return result;

}

return null;

async login (user: any) {
const payload = { sub: user.id, email: user.email };
return {
access token: this.jwtService.sign (payload, {
expiresIn: 'lh',
1),
refresh token: this.jwtService.sign(payload, {
expiresIn: '7d',
1),
bi

async register (email: string, password: string) {
const hashedPassword = await bcrypt.hash (password, 10);
return this.usersService.create ({
email,

passwordHash: hashedPassword,

1)

// src/modules/auth/auth.controller.ts
import Controller, Post, Body, UseGuards, Get, Reqg } from '@nestjs/con
import AuthService } from './auth.service';

import LocalAuthGuard } from '../../common/guards/local-auth.guard';

{
{
import { JwtAuthGuard } from '../../common/guards/jwt—-auth.guard';
{
{

import RegisterDto } from './dto/register.dto';
@Controller ('auth')
export class AuthController {

constructor (private authService: AuthService) {}

@Post ('register')
async register (@Body () registerDto: RegisterDto) {

return this.authService.register (registerDto.email, registerDto.pasq

QUseGuards (LocalAuthGuard)
@Post ('login')
async login (Q@Reqg () req: any) {

return this.authService.login (req.user)

@QUseGuards (JwtAuthGuard)
@Get ('profile')
getProfile (€GReqg () reqg: any) {

return reqg.user;

7.4 Health Check Endpoint

// src/modules/health/health.controller.ts
import { Controller, Get } from '@nestjs/common’';

import { HealthCheckService, HttpHealthIndicator, TypeOrmHealthIndicatorn

@Controller ()
export class HealthController {
constructor (
private health: HealthCheckService,
private db: TypeOrmHealthIndicator,

private http: HttpHealthIndicator,
) {1}

@Get ('health')
check () {
return this.health.check ([
() => this.db.pingCheck ('database', { timeout: 1500 }),
1)

@Get ('ready')
ready () {

return { status: 'ready' };

7.5 .env Configuration

NODE ENV=production
PORT=3000

Database

DATABASE URL=postgresql://user:password@host:5432/dbname
DB HOST=postgres.example.com

DB PORT=5432

DB USER=postgres

DB PASSWORD=secure password

DB NAME=production

JWT
JWT SECRET=your-secret-key-min-32-chars-long
JWT EXPIRATION=3600

AWS

AWS REGION=ap-south-1

AWS ACCESS_KEY ID=AKIA...

AWS_ SECRET ACCESS KEY=...

AWS S3 BUCKET=app-storage-bucket

CORS
CORS ORIGIN=https://app.example.com

Logging

LOG_LEVEL=info

8.1 Angular Project Setup

Create Angular project
ng new angular-frontend

cd angular-frontend

Install dependencies

ng add @angular/material

npm install @angular/common @angular/platform-browser-dynamic
npm install rxjs tslib zone.js

npm install ngrx ngrx-store-localstorage

npm install ngx-translate @ngx-translate/core

npm install http-interceptor

Generate modules/components

ng generate module modules/auth

ng generate component modules/auth/components/login

ng generate component modules/auth/components/register

ng generate service services/auth

ng generate module modules/dashboard

ng generate component modules/dashboard/pages/dashboard

ng generate module modules/files

ng generate component modules/files/components/upload

8.2 Angular Module Structure

// src/app/app.module.ts

import { NgModule } from 'Q@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { BrowserAnimationsModule } from '@angular/platform-browser/anims

import HttpClientModule, HTTP INTERCEPTORS } from '@angular/common/htf
import StoreModule } from '@ngrx/store';

import EffectsModule } from '@ngrx/effects';

import AppRoutingModule } from './app-routing.module';
import AppComponent } from './app.component';
import JwtInterceptor } from './interceptors/Jjwt.interceptor';

import ErrorInterceptor } from './interceptors/error.interceptor';

@NgModule ({
declarations: [AppComponent],
imports: |
BrowserModule,
BrowserAnimationsModule,
HttpClientModule,
AppRoutingModule,
StoreModule.forRoot ({}),
EffectsModule.forRoot ([]),
I
providers: [
{
provide: HTTP INTERCEPTORS,
useClass: JwtInterceptor,
multi: true,
by

{
provide: HTTP INTERCEPTORS,

useClass: ErrorInterceptor,
multi: true,
by
I
bootstrap: [AppComponent],

})
export class AppModule {}

8.3 Authentication Service (RxJS)

// src/app/services/auth.service.ts

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';
import { BehaviorSubject, Observable, of } from 'rxjs';

import { map, catchError, tap, switchMap } from 'rxjs/operators';

interface User ({
id: string;
email: string;
firstName: string;

lastName: string;

interface AuthResponse ({

access token: string;

refresh token: string;

@Injectable ({
providedIn: 'root',
})
export class AuthService {
private currentUserSubject: BehaviorSubject;

public currentUser$: Observable;

constructor (private http: HttpClient) {
this.currentUserSubject = new BehaviorSubject (
this.getUserFromStorage (),
) ;

this.currentUser$ = this.currentUserSubject.asObservable () ;

public get currentUserValue(): User | null {

return this.currentUserSubject.value;

login(email: string, password: string): Observable {
return this.http.post('/api/auth/login', {
email,
password,
}) .pipe (
tap ((response) => {
this.setTokens (response) ;
this.fetchCurrentUser () ;
1)y
) ;

register (email: string, password: string): Observable {

return this.http.post ('/api/auth/register', {

email,
password,

1)

logout () : void {
localStorage.removeltem ('access token');
localStorage.removeltem('refresh token');

this.currentUserSubject.next (null) ;

private fetchCurrentUser () : void {
this.http.get ('/api/auth/profile') .subscribe ({
next: (user) => this.currentUserSubject.next (user),
error: () => this.logout(),

1)

private setTokens (response: AuthResponse) : void {
localStorage.setItem('access token', response.access token);

localStorage.setItem('refresh token', response.refresh token);

private getUserFromStorage(): User | null {
const user = localStorage.getlItem('user'):;

return user ? JSON.parse (user) : null;

// src/app/interceptors/jwt.interceptor.ts

import { Injectable } from '@angular/core';

import { HttpInterceptor, HttpRequest, HttpHandler, HttpEvent } from 'Q@
import { Observable } from 'rxjs';

import { AuthService } from '../services/auth.service';

@Injectable ()
export class JwtInterceptor implements HttpInterceptor ({

constructor (private authService: AuthService) {}

intercept (
request: HttpRequest,
next: HttpHandler,

Observable> {

const token = localStorage.getltem('access token');

if (token) {
request = request.clone ({
setHeaders: {

Authorization: "Bearer S${token} ,

8.4 Dashboard Component with State Management

// src/app/modules/dashboard/components/dashboard.component.ts
import { Component, OnInit } from 'Qangular/core';
import { Observable } from 'rxjs';

import { AuthService } from '../../../services/auth.service';

@Component ({
selector: 'app-dashboard',
template:
<div class="dashboard">
<header>
<hl>Dashboard</hl>
<div *ngif="currentUser$ | async as user">
Welcome, {{ user.firstName }}!
</div>

</header>

<main>
<div class="widgets">
<div class="card">
<h3>Stats</h3>
<p>Your statistics here</p>

</div>

<app-file-upload></app-file-upload>
</div>
</main>

</div>

styles: [~
.dashboard {
padding: 20px;

header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 30px;
border-bottom: lpx solid #ccc;

padding-bottom: 15px;

.widgets {
display: grid;
grid-template-columns: repeat (auto-fit, minmax (300px,

gap: 20px;

.card {
background: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);

export class DashboardComponent implements OnInit {

currentUser$: Observable;

constructor (private authService: AuthService) {

this.currentUser$ = this.authService.currentUser$S;

ngOnInit () : void {}

9.1 GitHub Actions Workflow

.github/workflows/build-deploy.yml

name:

on:

Build and Deploy to EKS

push:

branches: [main, develop]

pull request:

branches: [main]

jobs:

build:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v3

- name: Configure AWS credentials

uses: aws-actions/configure-aws-credentials@v2

with:
aws—access-key-id: ${{ secrets.AWS ACCESS KEY ID }}
aws—-secret-access-key: S${{ secrets.AWS SECRET ACCESS KEY }}

aws—-region: ap-south-1

name: Login to ECR
id: login-ecr

uses: aws-actions/amazon-ecr-login@vl

name: Build NestJS API image
working-directory: ./api
run: |
docker build -t nestjs-api:latest
docker tag nestjs-api:latest ${{ steps.login-ecr.outputs.registi

docker push S${{ steps.login-ecr.outputs.registry }}/nestjs-api:

name: Build Angular Frontend image
working-directory: ./frontend
run: |
docker build -t angular-frontend:latest
docker tag angular-frontend:latest ${{ steps.login-ecr.outputs.

docker push ${{ steps.login-ecr.outputs.registry }}/angular-fro

name: Update kube manifests
run: |

sed -1 "s|IMAGE TAG|S${{ github.sha }}|g" k8s/overlays/productio

name: Commit and push
run: |
git config user.name "GitHub Actions"
git config user.email "actions@github.com"
git add k8s/
git commit -m "Update image tags to ${{ github.sha }}"
git push

deploy:
needs: build
runs-on: ubuntu-latest

if: github.ref == 'refs/heads/main’'

steps:

- uses: actions/checkout@v3

- name: Deploy with ArgoCD
run: |
curl -X POST ${{ secrets.ARGOCD SERVER }}/api/vl/applications/a(
-H "Authorization: Bearer ${{ secrets.ARGOCD TOKEN }}"

9.2 ArgoCD GitOps Setup

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: app
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/yourorg/app
targetRevision: main
path: k8s/overlays/production
destination:
server: https://kubernetes.default.svc
namespace: production

syncPolicy:

automated:
prune: true
selfHeal: true

syncOptions:

— CreateNamespace=true

9.3 Kustomize Overlay Structure

k8s/overlays/production/kustomization.yaml
apiVersion: kustomize.config.k8s.io/vlbetal

kind: Kustomization

namespace: production

bases:
- ../../base

commonLabels:
app.kubernetes.io/part-of: full-stack-app

app.kubernetes.io/environment: production

commonAnnotations:

deployment . kubernetes.io/revision: "1"

replicas:

- name: nestjs-api
count: 3
name: angular-frontend

count: 2

images:

- name: nestjs-api
newTag: IMAGE TAG
name: angular-frontend

newTag: IMAGE TAG

patchesStrategicMerge:
- deployment-patch.yaml

resources:
- namespace.yaml

- configmap.yaml

- secrets.yaml

- ingress.yaml

10. Deployment to EKS

10.1 EKS Cluster Creation

Create EKS cluster with eksctl
eksctl create cluster \\
--name app-production \\
--region ap-south-1 \\
--nodegroup-name standard-nodes \\
--node-type t3.large \\
--nodes 3 \\
--nodes-min 2 \\
--nodes-max 10 \\
--managed \\

--enable-ssm

Get kubeconfig
aws eks update-kubeconfig \\
--region ap-south-1 \\

--name app-production

Verify cluster
kubectl get nodes

kubectl get pods --all-namespaces

10.2 Install Required Add-ons

Install NGINX Ingress Controller
helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
helm install nginx-ingress ingress-nginx/ingress-nginx \\
--namespace ingress-nginx \\

--create-namespace

Install Cert-Manager
helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager \\
--namespace cert-manager \\
--create-namespace \\

--set installCRDs=true

Install Metrics Server (for HPA)
kubectl apply -f https://github.com/kubernetes-sigs/metrics-

server/releases/latest/download/components.yaml

Install Prometheus for monitoring
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm install prometheus prometheus-community/kube-prometheus-stack \\

--namespace monitoring \\

--create-namespace

Install Loki for logging
helm repo add grafana https://grafana.github.io/helm-charts
helm install loki grafana/loki-stack \\

--namespace monitoring \\

--set loki.persistence.enabled=true

10.3 Deploy Application

Create namespace

kubectl create namespace production

Create secrets
kubectl create secret generic db-credentials \\
--from-literal=connection-string="postgresql://user:pass@host/db" \\

-n production

Create ConfigMap
kubectl create configmap app-config \\
--from-literal=s3-bucket="app-storage-bucket" \\

-n production

Apply manifests
kubectl apply -f k8s/overlays/production/

Verify deployment

kubectl get deployments -n production
kubectl get pods -n production

kubectl get services -n production

Check logs
kubectl logs -f deployment/nestjs-api -n production

10.4 SSL Certificate with Cert-Manager

apiVersion: cert-manager.io/vl
kind: ClusterIssuer
metadata:
name: letsencrypt-prod
spec:
acme:
server: https://acme-v02.api.letsencrypt.org/directory
email: admin@example.com
privateKeySecretRef:
name: letsencrypt-prod
solvers:
- httpO1l:
ingress:

class: nginx

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: app-ingress
namespace: production
annotations:
cert-manager.io/cluster-issuer: "letsencrypt-prod"
nginx.ingress.kubernetes.io/ssl-redirect: "true"
spec:
ingressClassName: nginx
tls:
- hosts:
- app.example.com
- api.example.com
secretName: app-tls
rules:

- host: app.example.com

http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: angular-frontend
port:
number: 80
- host: api.example.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: nestjs-api
port:
number: 3000

11.1 Prometheus Metrics

// src/common/interceptors/metrics.interceptor.ts
import {
Injectable,
NestInterceptor,
ExecutionContext,
} from '@nestjs/common';
import { Observable } from 'rxjs';
import { tap } from 'rxjs/operators';

import { register, Counter, Histogram } from 'prom-client';

@Injectable ()

export class MetricsInterceptor implements NestInterceptor
private requestCounter = new Counter ({
name: 'http requests total',

help: 'Total HTTP requests',

labelNames: ['method', 'route', 'status'],

1)

private requestDuration = new Histogram ({
name: 'http request duration seconds',
help: 'HTTP request duration',
labelNames: ['method', 'route'],
buckets: [0.1, 0.5, 1, 2, 5],

});

intercept (context: ExecutionContext, next: any): Observable {
const request = context.switchToHttp () .getRequest () ;
const { method, url } = request;

const start = Date.now();

return next.handle () .pipe (
tap (
() => {
const duration = (Date.now() - start) / 1000;

const status = context.switchToHttp () .getResponse () .statusCods

this.requestCounter.inc ({
method,
route: url,
status,

}) s

this.requestDuration.observe ({ method, route: url }, duration)
}o
(error) => {
const duration = (Date.now() - start) / 1000;
this.requestCounter.inc ({
method,
route: url,
status: 500,
1) ;

this.requestDuration.observe ({ method, route: url }, duration)

// Expose metrics endpoint

@Controller ()

export class MetricsController ({
@Get ('/metrics"')
metrics () {

return register.metrics();

11.2 CloudWatch Logs Integration

// src/common/logger/logger.service.ts
import { Injectable,
import { CloudWatchClient,

@Injectable ()

PutLogEventsCommand } from

Logger as NestLogger } from '@nestjs/common’';

'RQaws-sdk/client—d

export class LoggerService extends NestLogger {

private cloudwatch: CloudWatchClient;

private logGroupName = '/ecs/app';

private logStreamName =

constructor () {
super () ;

this.cloudwatch =

log (message: string, context?: string):

super.log (message, context);

this.sendToCloudWatch ('INFO', message,

error (message: string, trace?: string,

super.error (message, trace, context);

this.sendToCloudWatch ("ERROR',

warn (message: string, context?: string) :

super.warn (message, context);

this.sendToCloudWatch ('WARN', message,

private async sendToCloudWatch (

level: string,

new CloudWatchClient ({

context?:

message,

"S{new Date () .toISOString ()

region: 'ap-south-1' });

void {

context) ;

string) : void {

context, trace);

void {

context) ;

message: string,
context?: string,
trace?: string,
Promise {
try |
const logMessage = {
timestamp: new Date ()
level,
context,
message,

trace,

i

const command = new PutLogEventsCommand ({
logGroupName: this.logGroupName,
logStreamName: this.logStreamName,
logEvents: [
{
message: JSON.stringify(logMessage),

timestamp: new Date () .getTime (),

b o
1
1)

awalt this.cloudwatch.send (command) ;
catch (error) {

console.error ('Failed to send logs to CloudWatch:', error);

11.3 Grafana Dashboard Setup

Key Metrics to Monitor:
e Pod CPU & Memory usage
e HTTP request rate and latency (P50, P95, P99)

e Database connection pool usage

e Error rate by endpoint

e Pod restart count

e Network I/0O

12.1 Network Policies

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: nestjs-api-netpol
namespace: production
spec:
podSelector:
matchLabels:
app: nestjs-api
policyTypes:
- Ingress
- Egress
ingress:
- from:
- podSelector:
matchLabels:
app: angular-frontend
- namespaceSelector:
matchLabels:
name: ingress-nginx
ports:
- protocol: TCP
port: 3000
egress:
- to:
- podSelector:
matchLabels:
app: postgres
ports:

- protocol: TCP

port: 5432
- to:
- namespaceSelector:
ports:
- protocol:
port: 53
- protocol:

port: 53

12.2 Pod Security Policy

apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:
name: restricted-psp
spec:
privileged: false
allowPrivilegeEscalation:
requiredDropCapabilities:
- ALL
volumes:
- 'configMap'
'emptyDir'
'projected’
'secret'
'downwardAPTI'
- 'persistentVolumeClaim'
hostNetwork: false
hostIPC: false
hostPID: false
runAsUser:
rule: 'MustRunAsNonRoot'
selLinux:
rule: 'MustRunAs'
seLinuxOptions:
level: "s0:cl123,c4506"
supplementalGroups:
rule: 'RunAsAny'
fsGroup:

rule: 'RunAsAny'

false

12.3 RBAC Configuration

apiVersion: vl
kind: ServiceAccount
metadata:

name: nestjs-api

namespace: production

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
name: nestjs-api-role
namespace: production
rules:
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["get", "list", "watch"]
apiGroups: [""]
resources: ["secrets"]

verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: nestjs-api-rolebinding
namespace: production
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: nestjs-api-role
subjects:
- kind: ServiceAccount
name: nestjs-api

namespace: production

13.1 Horizontal Pod Autoscaling (HPA)

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: nestjs-api-hpa
namespace: production
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: nestjs-api
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization:
- type: Resource
resource:
name: mMemory
target:
type: Utilization
averageUtilization:
- type: Pods
pods:
metric:
name: http requests per second
target:
type: AverageValue
averageValue: "1000"
behavior:
scaleDown:
stabilizationWindowSeconds:
policies:
- type: Percent
value: 50
periodSeconds: 15
scaleUp:

stabilizationWindowSeconds:

policies:

- type: Percent
value: 100
periodSeconds: 15
type: Pods
value: 4
periodSeconds: 15

selectPolicy: Max

13.2 Load Testing with k6

// load-test.]s
import http from 'k6/http';

import { check, sleep } from 'k6';

export const options = {
stages: [
{ duration: '30s', target: 20 },
{ duration: 'lm', target: 50 },
{ duration: '30s', target: 0 },

export default function () {
const res = http.get ('http://api.example.com/api/users');

check (res, {

'status is 200': (r) => r.status === 200,

'response time < 500ms': (r) => r.timings.duration < 500,

// Run with:
// k6 run load-test.js

13.3 Vertical Pod Autoscaling (VPA)

Install VPA
git clone https://github.com/kubernetes/autoscaler.git
cd autoscaler/vertical-pod-autoscaler

./hack/vpa-up.sh

Apply VPA resource
kubectl apply -f - <

13.4 Caching Strategy

// src/modules/users/users.service.ts
import Injectable, Inject } from '@nestjs/common';
import CACHE MANAGER } from '@nestjs/cache-manager';
import Repository } from 'typeorm';

import InjectRepository } from '@nestjs/typeorm';

{
{
import { Cache } from 'cache-manager';
{
{
{

import User } from './user.entity';
@Injectable ()
export class UsersService {
constructor (
@InjectRepository (User)
private usersRepository: Repository,
@Inject (CACHE MANAGER) private cacheManager: Cache,
) {}

async findById(id: string): Promise {

const cacheKey = “user:${id} ;

// Try cache first

let user = await this.cacheManager.get (cacheKey) ;

if (l'user) {
// Cache miss - query database

user = await this.usersRepository.findOneBy ({ id });

if (user) {
// Cache for 5 minutes

await this.cacheManager.set (cacheKey, user, 300000) ;

return user || null;

async update (id: string, data: Partial): Promise {

const user = await this.usersRepository.findOneBy ({ id });
if (user) {

Object.assign (user, data);

await this.usersRepository.save (user) ;

// Invalidate cache

await this.cacheManager.del (‘user:${id} ");

return user;

14. Troubleshooting & Best Practices

14.1 Common Issues & Solutions

Symptoms

) kubectl describe pod Check node capacity: "kubectl top
Pods pending _ .
shows pending nodes
DB connection Connection pool Increase max_connections or pool
timeout exhausted size

Increase memory limits in
Pod OOMKilled Memory limit exceeded
deployment

Symptoms

Verify ECR credentials and image

Image pull errors ImagePullBackOff status
path
Service Timeout connecting to Check NetworkPolicy and security
unreachable service groups
_ Requests taking >2 Check CPU usage, database
High latency
seconds queries, add more replicas

14.2 Debugging Commands

Check pod status
kubectl describe pod POD_NAME -n production

View logs
kubectl logs -f deployment/nestjs-api -n production

Execute command in pod

kubectl exec -it POD_NAME -n production -- /bin/sh

Port forward

kubectl port-forward service/nestjs-api 3000:3000 -n production

Check resource usage
kubectl top pods -n production
kubectl top nodes

Debug networking
kubectl debug node/NODE_NAME -it --image=ubuntu

Check persistent volume status
kubectl get pvc -n production

kubectl describe pvc PVC_NAME -n production

View events

kubectl get events -n production --sort-by='.lastTimestamp'

14.3 Best Practices Checklist

Development:

£4 Use TypeScript strict mode

.4 Add comprehensive unit tests

.4 Use dependency injection (NestJS)

{4 Validate all inputs

£4 Implement proper error handling

Docker:

e 4 Use multi-stage builds

e [Run as non-root user

4 Include health checks

{4 Keep images small (<200MB)

{4 Scan for vulnerabilities

Kubernetes:

e] Set resource requests/limits

4 Use health checks (liveness/readiness)

£4 Implement PodDisruptionBudget

4 Use NetworkPolicies

L1 Enable RBAC

Security:

e [] Use secrets for sensitive data
e [{ Enable TLS/SSL everywhere

e 1 Implement authentication/authorization

e [Regular security audits

e (1 Scan dependencies for CVEs

15. Production Checklist & Operations
Guide

15.1 Pre-Production Deployment Checklist

Infrastructure

O EKS cluster created and tested

O RDS PostgreSQL backup verified

O S3 buckets configured with versioning

O VPC security groups configured

O IAM roles and policies set up

O SSL certificates provisioned

Application

e [Unit tests passing

O Integration tests passing

O Code review completed

O Security scan passed

O Database migrations tested

e [Environment variables documented

Deployment

O Docker images built and pushed to ECR

O Kubernetes manifests validated

O CI/CD pipeline tested

O ArgoCD configured

O Ingress and TLS working

O Health checks configured

Monitoring

e [1 Prometheus metrics configured

O CloudWatch logs set up

0 Grafana dashboards created

O Alarms configured

0 On-call rotation established

0 Runbooks documented

15.2 Operational Runbooks

Scenario 1: Deploying New Version

1. Push code to GitHub main branch

2. GitHub Actions builds Docker images
3. Images pushed to ECR

4. Manifest updated with new tag

5. ArgoCD syncs automatically

6. Rolling update deploys new pods

7. Monitor logs: "kubectl logs -f deployment/nestjs-api’

Scenario 2: Scaling Up for Traffic Spike

1. Monitor metrics in Grafana
2. HPA automatically scales up to 20 replicas
3. Or manually: "kubectl scale deployment nestjs-api --replicas=10"

4. Verify replicas: "kubectl get deployment nestjs-api’

Scenario 3: Database Connection Issues

1. Check RDS instance: “aws rds describe-db-instances

2. Verify security groups allow traffic

3. Check connection pool: review logs for "too many connections”
4. Increase pool size in NestJS config

5. Restart pods: ‘kubectl rollout restart deployment/nestjs-api’

15.3 Maintenance Windows

Weekly Tasks:

e Review logs for errors
e Monitor cost trends

e Check security alerts

Monthly Tasks:

e Test backup/restore procedures
e Update dependencies
e Review and optimize performance

e Capacity planning review

Quarterly Tasks:

Disaster recovery drill

Security audit

Database optimization

15.4 Cost Optimization

Cost optimization review

Reserved EC2 Instances (1 year) 30-40% Low
Auto-scaling down off-peak 20-30% Medium
Spot Instances for non-critical 60-70% High
S3 Intelligent-Tiering 10-20% Low
RDS Reserved Instances 30-50% Low

15.5 Conclusion & Next Steps

You Now Have:

J Production-grade NestJS + Angular architecture

o Containerized application with Docker best practices
. Kubernetes orchestration on AWS EKS

. Scalable database with RDS PostgreSQL

. File storage with AWS S3

£4 CI/CD pipeline with GitHub Actions + ArgoCD

.4 Comprehensive monitoring and logging

£4 Security and compliance controls

{4 Operational runbooks and best practices

Next Steps:

1. Set up your GitHub repository with the code
2. Configure AWS account and services

3. Create Kubernetes cluster with EKS

4. Deploy application using provided manifests
5. Set up monitoring and alerting

6. Run load tests to validate performance

7. Execute pre-production checklist

8. Deploy to production

9. Continuously monitor and optimize

Support & Professional Services:
For implementation assistance, architecture reviews, or managed services:

@ sales@bithost.in

& www.bithost.in

mailto:sales@bithost.in
https://www.bithost.in/

Enterprise Solutions | DevOps | Kubernetes Consulting | Managed Services

sales@bithost.in | @ www.bithost.in

© 2026 Bithost. All Rights Reserved. | Complete Implementation Guide | Version 1.0

mailto:sales@bithost.in
https://www.bithost.in/

