
NestJS + Angular on AWS

Kubernetes

Publisher: Bithost

📧 sales@bithost.in

🌐 www.bithost.in

Document Type: Complete Technical Implementation Guide (15 Sections)

Reading Time: ~2 Hour

Version: 1.0 | Published: Jan 26, 2026

Stack: NestJS 10+, Angular 17+, Docker, Kubernetes, AWS EKS, PostgreSQL 15, S3

Complete Guide: Docker, Kubernetes, RDS PostgreSQL, S3 Storage

Production-Ready Microservices Architecture

mailto:sales@bithost.in
https://www.bithost.in/

📚 Complete Table of Contents (15

SECTIONS)

1. Executive Summary & Architecture

Vision

2. Infrastructure Planning & AWS

Selection

3. Docker Strategy & Image

Optimization

4. Kubernetes Architecture & EKS

Design

5. Database Setup (RDS PostgreSQL)

6. S3 Storage Configuration

7. NestJS API Development Setup

8. Angular Frontend Development

9. CI/CD Pipeline & GitOps

10. Deployment to EKS

11. Monitoring, Logging &

Observability

12. Security & Network Policies

13. Scaling & Performance

Optimization

14. Troubleshooting & Best Practices

15. Production Checklist & Operations

Guide

1. Executive Summary & Architecture

Vision

This guide provides a complete blueprint for deploying a modern full-stack application

(NestJS API + Angular Frontend) on AWS Kubernetes (EKS) with containerization via

Docker, persistent data in RDS PostgreSQL, and file storage in S3.

Architecture Overview

Three-Layer Architecture:

Presentation Layer: Angular SPA served via S3 + CloudFront CDN

Application Layer: NestJS API running in EKS pods

Data Layer: RDS PostgreSQL + S3 file storage

Key Features

Component Technology Purpose

API Server NestJS 10+
Scalable backend with dependency

injection

Frontend Angular 17+ Responsive SPA with RxJS

Containerization Docker
Consistent deployment across
environments

Orchestration
Kubernetes

(EKS)
Auto-scaling, self-healing, rolling updates

Database RDS PostgreSQL Managed relational database with backups

File Storage AWS S3 Scalable object storage for media

Benefits of This Approach

✅ High Availability: Multi-AZ deployment with auto-failover

✅ Auto-Scaling: Horizontal pod autoscaling based on metrics

✅ Zero Downtime: Rolling updates without service interruption

✅ Separation of Concerns: Frontend, API, and data independently scaled

✅ Cost Efficient: Pay-per-use with auto-scaling

✅ Easy CI/CD: Git-driven deployments with ArgoCD

✅ Production Grade: Built-in monitoring and logging

2. Infrastructure Planning & AWS

Selection

AWS Services Selection

Service Configuration Rationale

EKS
3-5 worker nodes

(t3.medium-t3.large)

Managed Kubernetes, AWS

integration

RDS

PostgreSQL
db.t3.large Multi-AZ

Automated backups,

replication, patches

S3 Standard + Intelligent-Tiering Durable, scalable file storage

ECR Private container registry Store Docker images securely

CloudFront CDN with S3 origin Serve Angular app from edge

Service Configuration Rationale

CloudWatch Logs + Metrics + Alarms Comprehensive observability

Cost Estimation (Monthly)

Component Low Usage Medium Usage High Usage

EKS Cluster $73 $73 $73

EC2 Nodes (3×t3.medium) $100 $180 $250

RDS PostgreSQL $280 $420 $600

S3 Storage (100GB) $2.30 $2.30 $2.30

Data Transfer $10 $30 $100

TOTAL $466 $705 $1,025

VPC Network Design

AWS Region: ap-south-1 (Mumbai)

├── VPC CIDR: 10.0.0.0/16

├── Public Subnets (ALB)

│ ├── 10.0.1.0/24 (ap-south-1a)

│ └── 10.0.2.0/24 (ap-south-1b)

├── Private Subnets (EKS Nodes)

│ ├── 10.0.11.0/24 (ap-south-1a)

│ └── 10.0.12.0/24 (ap-south-1b)

├── Database Subnets (RDS)

│ ├── 10.0.21.0/24 (ap-south-1a)

│ └── 10.0.22.0/24 (ap-south-1b)

└── NAT Gateway for private subnets

3. Docker Strategy & Image Optimization

3.1 NestJS API Dockerfile (Multi-Stage Build)

Stage 1: Builder

FROM node:18-alpine AS builder

WORKDIR /app

Copy package files

COPY package*.json ./

RUN npm ci --only=production && \\

 npm cache clean --force

Copy source code

COPY . .

Build NestJS

RUN npm run build

Stage 2: Runtime

FROM node:18-alpine

WORKDIR /app

Install dumb-init for proper signal handling

RUN apk add --no-cache dumb-init

Create non-root user

RUN addgroup -g 1001 -S nodejs && \\

 adduser -S nestjs -u 1001

Copy only necessary files from builder

COPY --from=builder --chown=nestjs:nodejs /app/node_modules ./node_modul

COPY --from=builder --chown=nestjs:nodejs /app/dist ./dist

COPY --from=builder --chown=nestjs:nodejs /app/package*.json ./

Switch to non-root user

USER nestjs

Health check

HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \

 CMD node -e "require('http').get('http://localhost:3000/health', (r)

Expose port

EXPOSE 3000

Use dumb-init to handle signals properly

ENTRYPOINT ["dumb-init", "--"]

Start application

CMD ["node", "dist/main.js"]

3.2 Angular Frontend Dockerfile

Stage 1: Build

FROM node:18-alpine AS builder

WORKDIR /app

COPY package*.json ./

RUN npm ci

COPY . .

RUN npm run build -- --configuration production

Stage 2: Serve with nginx

FROM nginx:alpine

Remove default config

RUN rm -rf /etc/nginx/conf.d/*

Copy nginx config

COPY nginx.conf /etc/nginx/conf.d/default.conf

 

Copy built Angular app from builder

COPY --from=builder /app/dist/angular-app /usr/share/nginx/html

Create non-root user for nginx

RUN addgroup -g 1001 -S www && \\

 adduser -S www -u 1001 && \\

 chown -R www:www /usr/share/nginx/html

Health check

HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \

 CMD wget --no-verbose --tries=1 --spider http://localhost/health ||

EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

3.3 nginx.conf for Angular

server {

 listen 80;

 server_name _;

 root /usr/share/nginx/html;

 index index.html index.htm;

 # Gzip compression

 gzip on;

 gzip_types text/plain text/css text/javascript application/javascrip

 gzip_min_length 1000;

 # Cache control

 location ~* \.(?:bundle\.js|bundle\.css)$ {

 expires 1y;

 add_header Cache-Control "public, immutable";

 }

 location ~* \.(js|css|fonts)$ {

 expires 30d;

 add_header Cache-Control "public";

 }

 # API proxy

 location /api/ {

 proxy_pass http://nestjs-api.default.svc.cluster.local:3000/;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

 # SPA routing

 location / {

 try_files $uri $uri/ /index.html;

 expires -1;

 add_header Cache-Control "public, max-age=0";

 }

 # Health check

 location /health {

 access_log off;

 return 200 "healthy\n";

 add_header Content-Type text/plain;

 }

}

3.4 Docker Image Optimization Tips

Use Alpine Linux for smaller images (5-10x smaller)

Multi-stage builds to exclude build dependencies

Run as non-root user for security

Include health checks for container orchestration

Use .dockerignore to exclude unnecessary files

Layer caching: place stable commands first

Compress images: ~80-150MB for NestJS, ~50-80MB for Angular

4. Kubernetes Architecture & EKS Design

4.1 EKS Cluster Architecture

AWS EKS Cluster (ap-south-1)

├── Control Plane (Managed by AWS)

│ ├── API Server

│ ├── etcd

│ ├── Scheduler

│ └── Controller Manager

├── Worker Nodes (EC2)

│ ├── Node 1 (ap-south-1a, t3.large)

│ ├── Node 2 (ap-south-1b, t3.large)

│ └── Node 3 (ap-south-1b, t3.medium)

├── Add-ons

│ ├── VPC CNI for networking

│ ├── CoreDNS for service discovery

│ ├── kube-proxy for load balancing

│ └── AWS Load Balancer Controller

└── Third-party

 ├── Prometheus (monitoring)

 ├── Loki (logging)

 ├── ArgoCD (GitOps)

 └── Cert-Manager (TLS)

4.2 Kubernetes Namespace Structure

Create namespaces

kubectl create namespace production

kubectl create namespace staging

kubectl create namespace monitoring

kubectl create namespace ingress-nginx

 

Apply namespace labels for pod security

kubectl label namespace production pod-security.kubernetes.io/enforce=ba

4.3 NestJS API Deployment (Kubernetes)

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nestjs-api

 namespace: production

 labels:

 app: nestjs-api

 tier: backend

spec:

 replicas: 3

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 0

 selector:

 matchLabels:

 app: nestjs-api

 template:

 metadata:

 labels:

 app: nestjs-api

 tier: backend

 annotations:

 prometheus.io/scrape: "true"

 prometheus.io/port: "3000"

 prometheus.io/path: "/metrics"

 spec:

 serviceAccountName: nestjs-api

 securityContext:

 runAsNonRoot: true

 runAsUser: 1001

 fsGroup: 1001

 containers:

 - name: nestjs-api

 image: 123456789.dkr.ecr.ap-south-1.amazonaws.com/nestjs-api:1.0

 imagePullPolicy: IfNotPresent

 ports:

 - name: http

 containerPort: 3000

 protocol: TCP

 env:

 - name: NODE_ENV

 value: "production"

 - name: DATABASE_URL

 valueFrom:

 secretKeyRef:

 name: db-credentials

 key: connection-string

 - name: AWS_S3_BUCKET

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: s3-bucket

 - name: AWS_REGION

 value: "ap-south-1"

 # Health checks

 livenessProbe:

 httpGet:

 path: /health

 port: http

 initialDelaySeconds: 30

 periodSeconds: 10

 timeoutSeconds: 5

 failureThreshold: 3

 readinessProbe:

 httpGet:

 path: /ready

 port: http

 initialDelaySeconds: 10

 periodSeconds: 5

 timeoutSeconds: 3

 failureThreshold: 3

 # Resource limits

 resources:

 requests:

 memory: "256Mi"

 cpu: "250m"

 limits:

 memory: "512Mi"

 cpu: "500m"

 # Volume mounts

 volumeMounts:

 - name: config

 mountPath: /app/config

 readOnly: true

 # Security context

 securityContext:

 allowPrivilegeEscalation: false

 readOnlyRootFilesystem: true

 capabilities:

 drop:

 - ALL

 # Pod anti-affinity for spreading

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 100

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - nestjs-api

 topologyKey: kubernetes.io/hostname

 volumes:

 - name: config

 configMap:

 name: nestjs-config

apiVersion: v1

kind: Service

metadata:

 name: nestjs-api

 namespace: production

spec:

 type: ClusterIP

 selector:

 app: nestjs-api

 ports:

 - name: http

 port: 3000

 targetPort: http

 protocol: TCP

apiVersion: autoscaling.k8s.io/v2

kind: HorizontalPodAutoscaler

metadata:

 name: nestjs-api-hpa

 namespace: production

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nestjs-api

 minReplicas: 3

 maxReplicas: 10

 metrics:

 - type: Resource

 resource:

 name: cpu

 target:

 type: Utilization

 averageUtilization: 70

 - type: Resource

 resource:

 name: memory

 target:

 type: Utilization

 averageUtilization: 80

 behavior:

 scaleDown:

 stabilizationWindowSeconds: 300

 policies:

 - type: Percent

 value: 50

 periodSeconds: 15

 scaleUp:

 stabilizationWindowSeconds: 0

 policies:

 - type: Percent

 value: 100

 periodSeconds: 15

 - type: Pods

 value: 2

 periodSeconds: 15

 selectPolicy: Max

4.4 Angular Frontend Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: angular-frontend

 namespace: production

spec:

 replicas: 2

 selector:

 matchLabels:

 app: angular-frontend

 template:

 metadata:

 labels:

 app: angular-frontend

 spec:

 containers:

 - name: angular

 image: 123456789.dkr.ecr.ap-south-1.amazonaws.com/angular-fronte

 ports:

 - containerPort: 80

 livenessProbe:

 httpGet:

 path: /health

 port: 80

 initialDelaySeconds: 20

 periodSeconds: 10

 readinessProbe:

 httpGet:

 path: /

 port: 80

 initialDelaySeconds: 5

 periodSeconds: 5

 resources:

 requests:

 memory: "128Mi"

 cpu: "100m"

 limits:

 memory: "256Mi"

 cpu: "200m"

apiVersion: v1

kind: Service

metadata:

 name: angular-frontend

 namespace: production

spec:

 type: LoadBalancer

 selector:

 app: angular-frontend

 ports:

 - port: 80

 targetPort: 80

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: app-ingress

 namespace: production

 annotations:

 cert-manager.io/cluster-issuer: "letsencrypt-prod"

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

spec:

 ingressClassName: nginx

 tls:

 - hosts:

 - app.example.com

 secretName: app-tls

 rules:

 - host: app.example.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: angular-frontend

 port:

 number: 80

 - path: /api

 pathType: Prefix

 backend:

 service:

 name: nestjs-api

 port:

 number: 3000

5. Database Setup (RDS PostgreSQL)

5.1 RDS PostgreSQL Creation (Terraform)

resource "aws_db_instance" "main" {

 identifier = "app-production-db"

 engine = "postgres"

 engine_version = "15.4"

 instance_class = "db.t3.large"

 allocated_storage = 100

 max_allocated_storage = 500

 storage_type = "gp3"

 storage_encrypted = true

 db_name = "production"

 username = "postgres"

 password = random_password.db_password.result

 # Availability

 multi_az = true

 publicly_accessible = false

 db_subnet_group_name = aws_db_subnet_group.main.name

 vpc_security_group_ids = [aws_security_group.rds.id]

 # Backups

 backup_retention_period = 30

 backup_window = "03:00-04:00"

 copy_tags_to_snapshot = true

 skip_final_snapshot = false

 # Performance

 performance_insights_enabled = true

 enabled_cloudwatch_logs_exports = ["postgresql"]

 deletion_protection = true

 tags = {

 Name = "app-production-db"

 Environment = "production"

 }

}

resource "aws_secretsmanager_secret" "db_password" {

 name = "app/db/credentials"

}

resource "aws_secretsmanager_secret_version" "db_password" {

 secret_id = aws_secretsmanager_secret.db_password.id

 secret_string = jsonencode({

 username = aws_db_instance.main.username

 password = aws_db_instance.main.password

 engine = "postgres"

 host = aws_db_instance.main.endpoint

 port = 5432

 dbname = aws_db_instance.main.db_name

 })

}

5.2 NestJS Database Configuration

// src/database/database.module.ts

import { Module } from '@nestjs/common';

import { TypeOrmModule } from '@nestjs/typeorm';

import { ConfigService } from '@nestjs/config';

@Module({

 imports: [

 TypeOrmModule.forRootAsync({

 inject: [ConfigService],

 useFactory: (config: ConfigService) => ({

 type: 'postgres',

 host: config.get('DB_HOST'),

 port: config.get('DB_PORT', 5432),

 username: config.get('DB_USER'),

 password: config.get('DB_PASSWORD'),

 database: config.get('DB_NAME'),

 entities: [__dirname + '/../**/*.entity.{js,ts}'],

 synchronize: false,

 migrations: [__dirname + '/../migrations/*.{js,ts}'],

 migrationsRun: true,

 logging: config.get('NODE_ENV') === 'development',

 ssl: {

 rejectUnauthorized: false,

 },

 pool: {

 min: 5,

 max: 20,

 },

 }),

 }),

],

})

export class DatabaseModule {}

5.3 Database Migrations (TypeORM)

// src/migrations/1704067200000-CreateUsersTable.ts

import { MigrationInterface, QueryRunner, Table } from 'typeorm';

export class CreateUsersTable1704067200000 implements MigrationInterface

 public async up(queryRunner: QueryRunner): Promise {

 await queryRunner.createTable(

 new Table({

 name: 'users',

 columns: [

 {

 name: 'id',

 type: 'uuid',

 isPrimary: true,

 default: 'gen_random_uuid()',

 },

 {

 name: 'email',

 type: 'varchar',

 isUnique: true,

 isNullable: false,

 },

 {

 name: 'password_hash',

 type: 'varchar',

 isNullable: false,

 },

 {

 name: 'first_name',

 type: 'varchar',

 isNullable: true,

 },

 {

 name: 'last_name',

 type: 'varchar',

 isNullable: true,

 },

 {

 name: 'is_active',

 type: 'boolean',

 default: true,

 },

 {

 name: 'created_at',

 type: 'timestamp',

 default: 'CURRENT_TIMESTAMP',

 },

 {

 name: 'updated_at',

 type: 'timestamp',

 default: 'CURRENT_TIMESTAMP',

 onUpdate: 'CURRENT_TIMESTAMP',

 },

],

 indices: [

 { columnNames: ['email'] },

 { columnNames: ['created_at'] },

],

 }),

);

 }

 public async down(queryRunner: QueryRunner): Promise {

 await queryRunner.dropTable('users');

 }

}

5.4 PostgreSQL Performance Tuning

Parameter Value Purpose

shared_buffers 4GB (25% of RAM) Cached data in memory

effective_cache_size
12GB (75% of

RAM)
Query planner estimates

work_mem 64MB Sort/hash memory per operation

maintenance_work_mem 1GB VACUUM/INDEX memory

max_connections 200
Maximum concurrent

connections

random_page_cost 1.1 SSD optimization

6. S3 Storage Configuration

6.1 S3 Bucket Setup (Terraform)

resource "aws_s3_bucket" "app_storage" {

 bucket = "app-storage-prod-${random_id.bucket.hex}"

 tags = {

 Name = "app-storage"

 Environment = "production"

 }

}

Enable versioning

resource "aws_s3_bucket_versioning" "app_storage" {

 bucket = aws_s3_bucket.app_storage.id

 versioning_configuration {

 status = "Enabled"

 }

}

Block public access

resource "aws_s3_bucket_public_access_block" "app_storage" {

 bucket = aws_s3_bucket.app_storage.id

 block_public_acls = true

 block_public_policy = true

 ignore_public_acls = true

 restrict_public_buckets = true

}

Encryption

resource "aws_s3_bucket_server_side_encryption_configuration" "app_stora

 bucket = aws_s3_bucket.app_storage.id

 rule {

 apply_server_side_encryption_by_default {

 sse_algorithm = "AES256"

 }

 }

}

Lifecycle policy

resource "aws_s3_bucket_lifecycle_configuration" "app_storage" {

 bucket = aws_s3_bucket.app_storage.id

 rule {

 id = "delete-old-versions"

 status = "Enabled"

 noncurrent_version_expiration {

 noncurrent_days = 90

 }

 }

 rule {

 id = "intelligent-tiering"

 status = "Enabled"

 transition {

 days = 30

 storage_class = "INTELLIGENT_TIERING"

 }

 }

}

CORS policy

resource "aws_s3_bucket_cors_configuration" "app_storage" {

 bucket = aws_s3_bucket.app_storage.id

 cors_rule {

 allowed_headers = ["*"]

 allowed_methods = ["GET", "PUT", "POST", "DELETE"]

 allowed_origins = ["https://app.example.com"]

 expose_headers = ["ETag"]

 max_age_seconds = 3000

 }

}

IAM policy for pod access

resource "aws_iam_role" "app_pod_role" {

 name = "app-pod-role"

 assume_role_policy = jsonencode({

 Version = "2012-10-17"

 Statement = [{

 Action = "sts:AssumeRole"

 Effect = "Allow"

 Principal = {

 Federated = "arn:aws:iam::ACCOUNT_ID:oidc-provider/oidc.eks.ap-s

 }

 Condition = {

 StringEquals = {

 "oidc.eks.ap-south-1.amazonaws.com/id/EXAMPLEID:sub" = "system

 }

 }

 }]

 })

}

resource "aws_iam_role_policy" "s3_access" {

 name = "s3-access"

 role = aws_iam_role.app_pod_role.id

 policy = jsonencode({

 Version = "2012-10-17"

 Statement = [{

 Effect = "Allow"

 Action = [

 "s3:GetObject",

 "s3:PutObject",

 "s3:DeleteObject",

 "s3:ListBucket"

]

 Resource = [

 aws_s3_bucket.app_storage.arn,

 "${aws_s3_bucket.app_storage.arn}/*"

]

 }]

 })

}

6.2 NestJS S3 File Upload Service

// src/storage/s3.service.ts

import { Injectable } from '@nestjs/common';

import { S3Client, PutObjectCommand, GetObjectCommand, DeleteObjectComma

import { getSignedUrl } from '@aws-sdk/s3-request-presigner';

import { ConfigService } from '@nestjs/config';

@Injectable()

export class S3Service {

 private s3Client: S3Client;

 constructor(private config: ConfigService) {

 this.s3Client = new S3Client({

 region: this.config.get('AWS_REGION'),

 credentials: {

 accessKeyId: this.config.get('AWS_ACCESS_KEY_ID'),

 secretAccessKey: this.config.get('AWS_SECRET_ACCESS_KEY'),

 },

 });

 }

 async uploadFile(

 bucket: string,

 key: string,

 body: Buffer,

 contentType: string,

): Promise {

 const command = new PutObjectCommand({

 Bucket: bucket,

 Key: key,

 Body: body,

 ContentType: contentType,

 });

 await this.s3Client.send(command);

 return `s3://${bucket}/${key}`;

 }

 async getPresignedUrl(bucket: string, key: string): Promise {

 const command = new GetObjectCommand({

 Bucket: bucket,

 Key: key,

 });

 return getSignedUrl(this.s3Client, command, { expiresIn: 3600 });

 }

 async deleteFile(bucket: string, key: string): Promise {

 const command = new DeleteObjectCommand({

 Bucket: bucket,

 Key: key,

 });

 await this.s3Client.send(command);

 }

}

6.3 Angular File Upload Component

// src/app/components/file-upload/file-upload.component.ts

import { Component } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Subject } from 'rxjs';

@Component({

 selector: 'app-file-upload',

 template: `

 <div class="upload-area">

 <input type="file" #fileinput="" (change)="onFileSelected($event)"

 <button (click)="upload()" [disabled]="!selectedFile || uploading"

 {{ '{{' }} uploading ? 'Uploading...' : 'Upload' {{ '}}' }}

 </button>

 <div class="progress" *ngif="uploadProgress$ | async as progress">

 <div class="bar" [style.width.%]="progress"></div>

 </div>

 </div>

 `,

})

export class FileUploadComponent {

 selectedFile: File | null = null;

 uploadProgress$ = new Subject();

 uploading = false;

 constructor(private http: HttpClient) {}

 onFileSelected(event: Event): void {

 const target = event.target as HTMLInputElement;

 this.selectedFile = target.files?.[0] || null;

 }

 upload(): void {

 if (!this.selectedFile) return;

 const formData = new FormData();

 formData.append('file', this.selectedFile);

 this.uploading = true;

 this.http.post('/api/upload', formData, {

 reportProgress: true,

 observe: 'events',

 }).subscribe(

 (event: any) => {

 if (event.type === 4) {

 this.uploading = false;

 console.log('Upload complete:', event.body);

 } else if (event.type === 1) {

 const progress = Math.round((event.loaded / event.total) * 100

 this.uploadProgress$.next(progress);

 }

 },

 (error) => {

 this.uploading = false;

 console.error('Upload failed:', error);

 }

);

 }

}

7. NestJS API Development Setup

7.1 Project Initialization

Initialize NestJS project

nest new nestjs-api

cd nestjs-api

Install essential dependencies

npm install @nestjs/common @nestjs/core @nestjs/platform-express

npm install @nestjs/typeorm typeorm pg

npm install @nestjs/config

npm install @nestjs/jwt @nestjs/passport passport passport-jwt

npm install aws-sdk @aws-sdk/client-s3

npm install class-validator class-transformer

npm install @nestjs/swagger swagger-ui-express

npm install --save-dev @types/node typescript

Create directory structure

mkdir src/{modules,common,config,decorators,guards,interceptors,pipes}

7.2 NestJS App Module (Main Entry)

 

// src/app.module.ts

import { Module, MiddlewareConsumer, NestModule } from '@nestjs/common';

import { ConfigModule } from '@nestjs/config';

import { TypeOrmModule } from '@nestjs/typeorm';

import { APP_FILTER, APP_INTERCEPTOR } from '@nestjs/core';

import { LoggerMiddleware } from './common/middleware/logger.middleware'

import { LoggingInterceptor } from './common/interceptors/logging.interc

import { AllExceptionsFilter } from './common/filters/all-exceptions.fil

import { DatabaseModule } from './modules/database/database.module';

import { AuthModule } from './modules/auth/auth.module';

import { UsersModule } from './modules/users/users.module';

import { FilesModule } from './modules/files/files.module';

import { HealthModule } from './modules/health/health.module';

@Module({

 imports: [

 ConfigModule.forRoot({

 isGlobal: true,

 envFilePath: '.env',

 }),

 DatabaseModule,

 AuthModule,

 UsersModule,

 FilesModule,

 HealthModule,

],

 providers: [

 {

 provide: APP_FILTER,

 useClass: AllExceptionsFilter,

 },

 {

 provide: APP_INTERCEPTOR,

 useClass: LoggingInterceptor,

 },

],

})

export class AppModule implements NestModule {

 configure(consumer: MiddlewareConsumer) {

 consumer.apply(LoggerMiddleware).forRoutes('*');

 }

}

7.3 Authentication Module

// src/modules/auth/auth.service.ts

import { Injectable, UnauthorizedException } from '@nestjs/common';

import { JwtService } from '@nestjs/jwt';

import * as bcrypt from 'bcrypt';

import { UsersService } from '../users/users.service';

@Injectable()

export class AuthService {

 constructor(

 private usersService: UsersService,

 private jwtService: JwtService,

) {}

 async validateUser(email: string, password: string) {

 const user = await this.usersService.findByEmail(email);

 if (user && await bcrypt.compare(password, user.passwordHash)) {

 const { passwordHash, ...result } = user;

 return result;

 }

 return null;

 }

 async login(user: any) {

 const payload = { sub: user.id, email: user.email };

 return {

 access_token: this.jwtService.sign(payload, {

 expiresIn: '1h',

 }),

 refresh_token: this.jwtService.sign(payload, {

 expiresIn: '7d',

 }),

 };

 }

 async register(email: string, password: string) {

 const hashedPassword = await bcrypt.hash(password, 10);

 return this.usersService.create({

 email,

 passwordHash: hashedPassword,

 });

 }

}

// src/modules/auth/auth.controller.ts

import { Controller, Post, Body, UseGuards, Get, Req } from '@nestjs/com

import { AuthService } from './auth.service';

import { JwtAuthGuard } from '../../common/guards/jwt-auth.guard';

import { LocalAuthGuard } from '../../common/guards/local-auth.guard';

import { RegisterDto } from './dto/register.dto';

@Controller('auth')

export class AuthController {

 constructor(private authService: AuthService) {}

 @Post('register')

 async register(@Body() registerDto: RegisterDto) {

 return this.authService.register(registerDto.email, registerDto.pass

 }

 @UseGuards(LocalAuthGuard)

 @Post('login')

 async login(@Req() req: any) {

 return this.authService.login(req.user);

 }

 @UseGuards(JwtAuthGuard)

 @Get('profile')

 getProfile(@Req() req: any) {

 return req.user;

 }

}

7.4 Health Check Endpoint

// src/modules/health/health.controller.ts

import { Controller, Get } from '@nestjs/common';

import { HealthCheckService, HttpHealthIndicator, TypeOrmHealthIndicator

@Controller()

export class HealthController {

 constructor(

 private health: HealthCheckService,

 private db: TypeOrmHealthIndicator,

 

 private http: HttpHealthIndicator,

) {}

 @Get('health')

 check() {

 return this.health.check([

 () => this.db.pingCheck('database', { timeout: 1500 }),

]);

 }

 @Get('ready')

 ready() {

 return { status: 'ready' };

 }

}

7.5 .env Configuration

NODE_ENV=production

PORT=3000

Database

DATABASE_URL=postgresql://user:password@host:5432/dbname

DB_HOST=postgres.example.com

DB_PORT=5432

DB_USER=postgres

DB_PASSWORD=secure_password

DB_NAME=production

JWT

JWT_SECRET=your-secret-key-min-32-chars-long

JWT_EXPIRATION=3600

AWS

AWS_REGION=ap-south-1

AWS_ACCESS_KEY_ID=AKIA...

AWS_SECRET_ACCESS_KEY=...

AWS_S3_BUCKET=app-storage-bucket

CORS

CORS_ORIGIN=https://app.example.com

Logging

LOG_LEVEL=info

8. Angular Frontend Development

8.1 Angular Project Setup

Create Angular project

ng new angular-frontend

cd angular-frontend

Install dependencies

ng add @angular/material

npm install @angular/common @angular/platform-browser-dynamic

npm install rxjs tslib zone.js

npm install ngrx ngrx-store-localstorage

npm install ngx-translate @ngx-translate/core

npm install http-interceptor

Generate modules/components

ng generate module modules/auth

ng generate component modules/auth/components/login

ng generate component modules/auth/components/register

ng generate service services/auth

ng generate module modules/dashboard

ng generate component modules/dashboard/pages/dashboard

ng generate module modules/files

ng generate component modules/files/components/upload

8.2 Angular Module Structure

// src/app/app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { BrowserAnimationsModule } from '@angular/platform-browser/anima

 

import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/htt

import { StoreModule } from '@ngrx/store';

import { EffectsModule } from '@ngrx/effects';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { JwtInterceptor } from './interceptors/jwt.interceptor';

import { ErrorInterceptor } from './interceptors/error.interceptor';

@NgModule({

 declarations: [AppComponent],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 HttpClientModule,

 AppRoutingModule,

 StoreModule.forRoot({}),

 EffectsModule.forRoot([]),

],

 providers: [

 {

 provide: HTTP_INTERCEPTORS,

 useClass: JwtInterceptor,

 multi: true,

 },

 {

 provide: HTTP_INTERCEPTORS,

 useClass: ErrorInterceptor,

 multi: true,

 },

],

 bootstrap: [AppComponent],

})

export class AppModule {}

8.3 Authentication Service (RxJS)

// src/app/services/auth.service.ts

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { BehaviorSubject, Observable, of } from 'rxjs';

import { map, catchError, tap, switchMap } from 'rxjs/operators';

interface User {

 id: string;

 email: string;

 firstName: string;

 lastName: string;

}

interface AuthResponse {

 access_token: string;

 refresh_token: string;

}

@Injectable({

 providedIn: 'root',

})

export class AuthService {

 private currentUserSubject: BehaviorSubject;

 public currentUser$: Observable;

 constructor(private http: HttpClient) {

 this.currentUserSubject = new BehaviorSubject(

 this.getUserFromStorage(),

);

 this.currentUser$ = this.currentUserSubject.asObservable();

 }

 public get currentUserValue(): User | null {

 return this.currentUserSubject.value;

 }

 login(email: string, password: string): Observable {

 return this.http.post('/api/auth/login', {

 email,

 password,

 }).pipe(

 tap((response) => {

 this.setTokens(response);

 this.fetchCurrentUser();

 }),

);

 }

 register(email: string, password: string): Observable {

 return this.http.post('/api/auth/register', {

 email,

 password,

 });

 }

 logout(): void {

 localStorage.removeItem('access_token');

 localStorage.removeItem('refresh_token');

 this.currentUserSubject.next(null);

 }

 private fetchCurrentUser(): void {

 this.http.get('/api/auth/profile').subscribe({

 next: (user) => this.currentUserSubject.next(user),

 error: () => this.logout(),

 });

 }

 private setTokens(response: AuthResponse): void {

 localStorage.setItem('access_token', response.access_token);

 localStorage.setItem('refresh_token', response.refresh_token);

 }

 private getUserFromStorage(): User | null {

 const user = localStorage.getItem('user');

 return user ? JSON.parse(user) : null;

 }

}

// src/app/interceptors/jwt.interceptor.ts

import { Injectable } from '@angular/core';

import { HttpInterceptor, HttpRequest, HttpHandler, HttpEvent } from '@a

import { Observable } from 'rxjs';

import { AuthService } from '../services/auth.service';

@Injectable()

export class JwtInterceptor implements HttpInterceptor {

 constructor(private authService: AuthService) {}

 intercept(

 request: HttpRequest,

 next: HttpHandler,

): Observable> {

 const token = localStorage.getItem('access_token');

 if (token) {

 request = request.clone({

 setHeaders: {

 Authorization: `Bearer ${token}`,

 },

 });

 }

 return next.handle(request);

 }

}

8.4 Dashboard Component with State Management

// src/app/modules/dashboard/components/dashboard.component.ts

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { AuthService } from '../../../services/auth.service';

@Component({

 selector: 'app-dashboard',

 template: `

 <div class="dashboard">

 <header>

 <h1>Dashboard</h1>

 <div *ngif="currentUser$ | async as user">

 Welcome, {{ user.firstName }}!

 </div>

 </header>

 <main>

 <div class="widgets">

 <div class="card">

 <h3>Stats</h3>

 <p>Your statistics here</p>

 </div>

 <app-file-upload></app-file-upload>

 </div>

 </main>

 </div>

 `,

 styles: [`

 .dashboard {

 padding: 20px;

 }

 header {

 display: flex;

 justify-content: space-between;

 align-items: center;

 margin-bottom: 30px;

 border-bottom: 1px solid #ccc;

 padding-bottom: 15px;

 }

 .widgets {

 display: grid;

 grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));

 gap: 20px;

 }

 .card {

 background: white;

 border-radius: 8px;

 padding: 20px;

 box-shadow: 0 2px 8px rgba(0,0,0,0.1);

 }

 `],

})

export class DashboardComponent implements OnInit {

 currentUser$: Observable;

 constructor(private authService: AuthService) {

 this.currentUser$ = this.authService.currentUser$;

 }

 ngOnInit(): void {}

}

9. CI/CD Pipeline & GitOps

9.1 GitHub Actions Workflow

.github/workflows/build-deploy.yml

name: Build and Deploy to EKS

on:

 push:

 branches: [main, develop]

 pull_request:

 branches: [main]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v3

 - name: Configure AWS credentials

 uses: aws-actions/configure-aws-credentials@v2

 with:

 aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}

 aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

 aws-region: ap-south-1

 - name: Login to ECR

 id: login-ecr

 uses: aws-actions/amazon-ecr-login@v1

 - name: Build NestJS API image

 working-directory: ./api

 run: |

 docker build -t nestjs-api:latest .

 docker tag nestjs-api:latest ${{ steps.login-ecr.outputs.registr

 docker push ${{ steps.login-ecr.outputs.registry }}/nestjs-api:$

 - name: Build Angular Frontend image

 working-directory: ./frontend

 run: |

 docker build -t angular-frontend:latest .

 docker tag angular-frontend:latest ${{ steps.login-ecr.outputs.r

 docker push ${{ steps.login-ecr.outputs.registry }}/angular-fron

 - name: Update kube manifests

 run: |

 sed -i "s|IMAGE_TAG|${{ github.sha }}|g" k8s/overlays/production

 - name: Commit and push

 run: |

 git config user.name "GitHub Actions"

 git config user.email "actions@github.com"

 git add k8s/

 git commit -m "Update image tags to ${{ github.sha }}"

 git push

 deploy:

 needs: build

 runs-on: ubuntu-latest

 if: github.ref == 'refs/heads/main'

 steps:

 - uses: actions/checkout@v3

 - name: Deploy with ArgoCD

 run: |

 curl -X POST ${{ secrets.ARGOCD_SERVER }}/api/v1/applications/ap

 -H "Authorization: Bearer ${{ secrets.ARGOCD_TOKEN }}"

9.2 ArgoCD GitOps Setup

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: app

 namespace: argocd

spec:

 project: default

 source:

 repoURL: https://github.com/yourorg/app

 targetRevision: main

 path: k8s/overlays/production

 destination:

 server: https://kubernetes.default.svc

 namespace: production

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 syncOptions:

 - CreateNamespace=true

9.3 Kustomize Overlay Structure

k8s/overlays/production/kustomization.yaml

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

namespace: production

bases:

- ../../base

commonLabels:

 app.kubernetes.io/part-of: full-stack-app

 app.kubernetes.io/environment: production

commonAnnotations:

 deployment.kubernetes.io/revision: "1"

replicas:

- name: nestjs-api

 count: 3

- name: angular-frontend

 count: 2

images:

- name: nestjs-api

 newTag: IMAGE_TAG

- name: angular-frontend

 newTag: IMAGE_TAG

patchesStrategicMerge:

- deployment-patch.yaml

resources:

- namespace.yaml

- configmap.yaml

- secrets.yaml

- ingress.yaml

10. Deployment to EKS

10.1 EKS Cluster Creation

Create EKS cluster with eksctl

eksctl create cluster \\

 --name app-production \\

 --region ap-south-1 \\

 --nodegroup-name standard-nodes \\

 --node-type t3.large \\

 --nodes 3 \\

 --nodes-min 2 \\

 --nodes-max 10 \\

 --managed \\

 --enable-ssm

Get kubeconfig

aws eks update-kubeconfig \\

 --region ap-south-1 \\

 --name app-production

Verify cluster

kubectl get nodes

kubectl get pods --all-namespaces

10.2 Install Required Add-ons

Install NGINX Ingress Controller

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

helm repo update

helm install nginx-ingress ingress-nginx/ingress-nginx \\

 --namespace ingress-nginx \\

 --create-namespace

Install Cert-Manager

helm repo add jetstack https://charts.jetstack.io

helm repo update

helm install cert-manager jetstack/cert-manager \\

 --namespace cert-manager \\

 --create-namespace \\

 --set installCRDs=true

Install Metrics Server (for HPA)

kubectl apply -f https://github.com/kubernetes-sigs/metrics-

server/releases/latest/download/components.yaml

Install Prometheus for monitoring

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

helm install prometheus prometheus-community/kube-prometheus-stack \\

 --namespace monitoring \\

 --create-namespace

Install Loki for logging

helm repo add grafana https://grafana.github.io/helm-charts

helm install loki grafana/loki-stack \\

 --namespace monitoring \\

 --set loki.persistence.enabled=true

10.3 Deploy Application

Create namespace

kubectl create namespace production

Create secrets

kubectl create secret generic db-credentials \\

 --from-literal=connection-string="postgresql://user:pass@host/db" \\

 -n production

Create ConfigMap

kubectl create configmap app-config \\

 --from-literal=s3-bucket="app-storage-bucket" \\

 -n production

Apply manifests

kubectl apply -f k8s/overlays/production/

Verify deployment

kubectl get deployments -n production

kubectl get pods -n production

kubectl get services -n production

Check logs

kubectl logs -f deployment/nestjs-api -n production

10.4 SSL Certificate with Cert-Manager

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-prod

spec:

 acme:

 server: https://acme-v02.api.letsencrypt.org/directory

 email: admin@example.com

 privateKeySecretRef:

 name: letsencrypt-prod

 solvers:

 - http01:

 ingress:

 class: nginx

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: app-ingress

 namespace: production

 annotations:

 cert-manager.io/cluster-issuer: "letsencrypt-prod"

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

spec:

 ingressClassName: nginx

 tls:

 - hosts:

 - app.example.com

 - api.example.com

 secretName: app-tls

 rules:

 - host: app.example.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: angular-frontend

 port:

 number: 80

 - host: api.example.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: nestjs-api

 port:

 number: 3000

11. Monitoring, Logging & Observability

11.1 Prometheus Metrics

// src/common/interceptors/metrics.interceptor.ts

import {

 Injectable,

 NestInterceptor,

 ExecutionContext,

} from '@nestjs/common';

import { Observable } from 'rxjs';

import { tap } from 'rxjs/operators';

import { register, Counter, Histogram } from 'prom-client';

@Injectable()

export class MetricsInterceptor implements NestInterceptor {

 private requestCounter = new Counter({

 name: 'http_requests_total',

 help: 'Total HTTP requests',

 labelNames: ['method', 'route', 'status'],

 });

 private requestDuration = new Histogram({

 name: 'http_request_duration_seconds',

 help: 'HTTP request duration',

 labelNames: ['method', 'route'],

 buckets: [0.1, 0.5, 1, 2, 5],

 });

 intercept(context: ExecutionContext, next: any): Observable {

 const request = context.switchToHttp().getRequest();

 const { method, url } = request;

 const start = Date.now();

 return next.handle().pipe(

 tap(

 () => {

 const duration = (Date.now() - start) / 1000;

 const status = context.switchToHttp().getResponse().statusCode

 this.requestCounter.inc({

 method,

 route: url,

 status,

 });

 this.requestDuration.observe({ method, route: url }, duration)

 },

 (error) => {

 const duration = (Date.now() - start) / 1000;

 this.requestCounter.inc({

 method,

 route: url,

 status: 500,

 });

 this.requestDuration.observe({ method, route: url }, duration)

 },

),

);

 }

}

// Expose metrics endpoint

@Controller()

export class MetricsController {

 @Get('/metrics')

 metrics() {

 return register.metrics();

 }

}

11.2 CloudWatch Logs Integration

// src/common/logger/logger.service.ts

import { Injectable, Logger as NestLogger } from '@nestjs/common';

import { CloudWatchClient, PutLogEventsCommand } from '@aws-sdk/client-c

@Injectable()

export class LoggerService extends NestLogger {

 private cloudwatch: CloudWatchClient;

 private logGroupName = '/ecs/app';

 private logStreamName = `${new Date().toISOString().split('T')[0]}-str

 constructor() {

 super();

 this.cloudwatch = new CloudWatchClient({ region: 'ap-south-1' });

 }

 log(message: string, context?: string): void {

 super.log(message, context);

 this.sendToCloudWatch('INFO', message, context);

 }

 error(message: string, trace?: string, context?: string): void {

 super.error(message, trace, context);

 this.sendToCloudWatch('ERROR', message, context, trace);

 }

 warn(message: string, context?: string): void {

 super.warn(message, context);

 this.sendToCloudWatch('WARN', message, context);

 }

 private async sendToCloudWatch(

 level: string,

 message: string,

 context?: string,

 trace?: string,

): Promise {

 try {

 const logMessage = {

 timestamp: new Date().getTime(),

 level,

 context,

 message,

 trace,

 };

 const command = new PutLogEventsCommand({

 logGroupName: this.logGroupName,

 logStreamName: this.logStreamName,

 logEvents: [

 {

 message: JSON.stringify(logMessage),

 timestamp: new Date().getTime(),

 },

],

 });

 await this.cloudwatch.send(command);

 } catch (error) {

 console.error('Failed to send logs to CloudWatch:', error);

 }

 }

}

11.3 Grafana Dashboard Setup

Key Metrics to Monitor:

Pod CPU & Memory usage

HTTP request rate and latency (P50, P95, P99)

Database connection pool usage

Error rate by endpoint

Pod restart count

Network I/O

12. Security & Network Policies

12.1 Network Policies

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: nestjs-api-netpol

 namespace: production

spec:

 podSelector:

 matchLabels:

 app: nestjs-api

 policyTypes:

 - Ingress

 - Egress

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: angular-frontend

 - namespaceSelector:

 matchLabels:

 name: ingress-nginx

 ports:

 - protocol: TCP

 port: 3000

 egress:

 - to:

 - podSelector:

 matchLabels:

 app: postgres

 ports:

 - protocol: TCP

 port: 5432

 - to:

 - namespaceSelector: {}

 ports:

 - protocol: TCP

 port: 53

 - protocol: UDP

 port: 53

12.2 Pod Security Policy

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted-psp

spec:

 privileged: false

 allowPrivilegeEscalation: false

 requiredDropCapabilities:

 - ALL

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 - 'persistentVolumeClaim'

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 rule: 'MustRunAsNonRoot'

 seLinux:

 rule: 'MustRunAs'

 seLinuxOptions:

 level: "s0:c123,c456"

 supplementalGroups:

 rule: 'RunAsAny'

 fsGroup:

 rule: 'RunAsAny'

12.3 RBAC Configuration

apiVersion: v1

kind: ServiceAccount

metadata:

 name: nestjs-api

 namespace: production

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: nestjs-api-role

 namespace: production

rules:

- apiGroups: [""]

 resources: ["configmaps"]

 verbs: ["get", "list", "watch"]

- apiGroups: [""]

 resources: ["secrets"]

 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: nestjs-api-rolebinding

 namespace: production

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: nestjs-api-role

subjects:

- kind: ServiceAccount

 name: nestjs-api

 namespace: production

13. Scaling & Performance Optimization

13.1 Horizontal Pod Autoscaling (HPA)

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

 name: nestjs-api-hpa

 namespace: production

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nestjs-api

 minReplicas: 3

 maxReplicas: 20

 metrics:

 - type: Resource

 resource:

 name: cpu

 target:

 type: Utilization

 averageUtilization: 70

 - type: Resource

 resource:

 name: memory

 target:

 type: Utilization

 averageUtilization: 80

 - type: Pods

 pods:

 metric:

 name: http_requests_per_second

 target:

 type: AverageValue

 averageValue: "1000"

 behavior:

 scaleDown:

 stabilizationWindowSeconds: 300

 policies:

 - type: Percent

 value: 50

 periodSeconds: 15

 scaleUp:

 stabilizationWindowSeconds: 0

 policies:

 - type: Percent

 value: 100

 periodSeconds: 15

 - type: Pods

 value: 4

 periodSeconds: 15

 selectPolicy: Max

13.2 Load Testing with k6

// load-test.js

import http from 'k6/http';

import { check, sleep } from 'k6';

export const options = {

 stages: [

 { duration: '30s', target: 20 },

 { duration: '1m', target: 50 },

 { duration: '30s', target: 0 },

],

};

export default function () {

 const res = http.get('http://api.example.com/api/users');

 check(res, {

 'status is 200': (r) => r.status === 200,

 'response time < 500ms': (r) => r.timings.duration < 500,

 });

 sleep(1);

}

// Run with:

// k6 run load-test.js

13.3 Vertical Pod Autoscaling (VPA)

Install VPA

git clone https://github.com/kubernetes/autoscaler.git

cd autoscaler/vertical-pod-autoscaler

./hack/vpa-up.sh

Apply VPA resource

kubectl apply -f - <

13.4 Caching Strategy

// src/modules/users/users.service.ts

import { Injectable, Inject } from '@nestjs/common';

import { CACHE_MANAGER } from '@nestjs/cache-manager';

import { Cache } from 'cache-manager';

import { Repository } from 'typeorm';

import { InjectRepository } from '@nestjs/typeorm';

import { User } from './user.entity';

@Injectable()

export class UsersService {

 constructor(

 @InjectRepository(User)

 private usersRepository: Repository,

 @Inject(CACHE_MANAGER) private cacheManager: Cache,

) {}

 async findById(id: string): Promise {

 const cacheKey = `user:${id}`;

 // Try cache first

 let user = await this.cacheManager.get(cacheKey);

 if (!user) {

 // Cache miss - query database

 user = await this.usersRepository.findOneBy({ id });

 if (user) {

 // Cache for 5 minutes

 await this.cacheManager.set(cacheKey, user, 300000);

 }

 }

 return user || null;

 }

 async update(id: string, data: Partial): Promise {

 const user = await this.usersRepository.findOneBy({ id });

 if (user) {

 Object.assign(user, data);

 await this.usersRepository.save(user);

 // Invalidate cache

 await this.cacheManager.del(`user:${id}`);

 }

 return user;

 }

}

14. Troubleshooting & Best Practices

14.1 Common Issues & Solutions

Issue Symptoms Solution

Pods pending
kubectl describe pod

shows pending

Check node capacity: `kubectl top

nodes`

DB connection
timeout

Connection pool
exhausted

Increase max_connections or pool
size

Pod OOMKilled Memory limit exceeded
Increase memory limits in

deployment

Issue Symptoms Solution

Image pull errors ImagePullBackOff status
Verify ECR credentials and image

path

Service

unreachable

Timeout connecting to

service

Check NetworkPolicy and security

groups

High latency
Requests taking >2

seconds

Check CPU usage, database

queries, add more replicas

14.2 Debugging Commands

Check pod status

kubectl describe pod POD_NAME -n production

View logs

kubectl logs -f deployment/nestjs-api -n production

Execute command in pod

kubectl exec -it POD_NAME -n production -- /bin/sh

Port forward

kubectl port-forward service/nestjs-api 3000:3000 -n production

Check resource usage

kubectl top pods -n production

kubectl top nodes

Debug networking

kubectl debug node/NODE_NAME -it --image=ubuntu

Check persistent volume status

kubectl get pvc -n production

kubectl describe pvc PVC_NAME -n production

View events

kubectl get events -n production --sort-by='.lastTimestamp'

14.3 Best Practices Checklist

Development:

✅ Use TypeScript strict mode

✅ Add comprehensive unit tests

✅ Use dependency injection (NestJS)

✅ Validate all inputs

✅ Implement proper error handling

Docker:

✅ Use multi-stage builds

✅ Run as non-root user

✅ Include health checks

✅ Keep images small (<200MB)

✅ Scan for vulnerabilities

Kubernetes:

✅ Set resource requests/limits

✅ Use health checks (liveness/readiness)

✅ Implement PodDisruptionBudget

✅ Use NetworkPolicies

✅ Enable RBAC

Security:

✅ Use secrets for sensitive data

✅ Enable TLS/SSL everywhere

✅ Implement authentication/authorization

✅ Regular security audits

✅ Scan dependencies for CVEs

15. Production Checklist & Operations

Guide

15.1 Pre-Production Deployment Checklist

Infrastructure

☐ EKS cluster created and tested

☐ RDS PostgreSQL backup verified

☐ S3 buckets configured with versioning

☐ VPC security groups configured

☐ IAM roles and policies set up

☐ SSL certificates provisioned

Application

☐ Unit tests passing

☐ Integration tests passing

☐ Code review completed

☐ Security scan passed

☐ Database migrations tested

☐ Environment variables documented

Deployment

☐ Docker images built and pushed to ECR

☐ Kubernetes manifests validated

☐ CI/CD pipeline tested

☐ ArgoCD configured

☐ Ingress and TLS working

☐ Health checks configured

Monitoring

☐ Prometheus metrics configured

☐ CloudWatch logs set up

☐ Grafana dashboards created

☐ Alarms configured

☐ On-call rotation established

☐ Runbooks documented

15.2 Operational Runbooks

Scenario 1: Deploying New Version

1. Push code to GitHub main branch

2. GitHub Actions builds Docker images

3. Images pushed to ECR

4. Manifest updated with new tag

5. ArgoCD syncs automatically

6. Rolling update deploys new pods

7. Monitor logs: `kubectl logs -f deployment/nestjs-api`

Scenario 2: Scaling Up for Traffic Spike

1. Monitor metrics in Grafana

2. HPA automatically scales up to 20 replicas

3. Or manually: `kubectl scale deployment nestjs-api --replicas=10`

4. Verify replicas: `kubectl get deployment nestjs-api`

Scenario 3: Database Connection Issues

1. Check RDS instance: `aws rds describe-db-instances`

2. Verify security groups allow traffic

3. Check connection pool: review logs for "too many connections"

4. Increase pool size in NestJS config

5. Restart pods: `kubectl rollout restart deployment/nestjs-api`

15.3 Maintenance Windows

Weekly Tasks:

Review logs for errors

Monitor cost trends

Check security alerts

Monthly Tasks:

Test backup/restore procedures

Update dependencies

Review and optimize performance

Capacity planning review

Quarterly Tasks:

Disaster recovery drill

Security audit

Database optimization

Cost optimization review

15.4 Cost Optimization

Optimization Savings Effort

Reserved EC2 Instances (1 year) 30-40% Low

Auto-scaling down off-peak 20-30% Medium

Spot Instances for non-critical 60-70% High

S3 Intelligent-Tiering 10-20% Low

RDS Reserved Instances 30-50% Low

15.5 Conclusion & Next Steps

You Now Have:

✅ Production-grade NestJS + Angular architecture

✅ Containerized application with Docker best practices

✅ Kubernetes orchestration on AWS EKS

✅ Scalable database with RDS PostgreSQL

✅ File storage with AWS S3

✅ CI/CD pipeline with GitHub Actions + ArgoCD

✅ Comprehensive monitoring and logging

✅ Security and compliance controls

✅ Operational runbooks and best practices

Next Steps:

1. Set up your GitHub repository with the code

2. Configure AWS account and services

3. Create Kubernetes cluster with EKS

4. Deploy application using provided manifests

5. Set up monitoring and alerting

6. Run load tests to validate performance

7. Execute pre-production checklist

8. Deploy to production

9. Continuously monitor and optimize

Support & Professional Services:

For implementation assistance, architecture reviews, or managed services:

📧 sales@bithost.in

🌐 www.bithost.in

mailto:sales@bithost.in
https://www.bithost.in/

Bithost - Cloud Infrastructure & Kubernetes Specialists

Enterprise Solutions | DevOps | Kubernetes Consulting | Managed Services

📧 sales@bithost.in | 🌐 www.bithost.in

© 2026 Bithost. All Rights Reserved. | Complete Implementation Guide | Version 1.0

mailto:sales@bithost.in
https://www.bithost.in/

